
04/09/2017

1

CS/ENGRD 2110
FALL 2017
Lecture 5: Local vars; Inside-out rule; constructors
http://courses.cs.cornell.edu/cs2110

1

Announcements
2

1. Writing tests to check that the code works when the
precondition is satisfied is not optional.

2. Writing assertions to verify the precondition is satisfied is not
optional, and if you do so incorrectly you will lose points.

3. Writing tests to verify that you have done (2) correctly is
optional. Look at JavaHyperText entry for JUnit testing, to
see how to test whether an assert statement is correct.

Homework
3

Visit course website, click on Resources and then on Code Style
Guidelines. Study

4.2 Keep methods short

4.3 Use statement-comments …

4.4 Use returns to simplify method structure
4.6 Declare local variables close to first use …

Assignment 1
4

Due on September 6 (tomorrow!).

Form a group before submitting (or lose points). One partner has
to invite the other on CMS, and the other has to accept.

Finish early!

References to JavaHyperText
5

¨ local variable

¨ scope
¨ this

¨ shadowing a variable

¨ inside-out rule

¨ super

¨ constructor; constructor call; constructor, default;
constructor call, default

Local variables
6

/** Return middle value of a, b, c (no ordering assumed) */
public static int middle(int a, int b, int c) {

if (b > c) {
int temp= b;
b= c;
c= temp;

}

if (a <= b) {
return b;

}

return Math.min(a, c);
}

Parameter: variable
declared in () of
method header

middle(8, 6, 7)

a 8 c 7b 6

Local variable:
variable

declared in
method body

temp ?

All parameters and local variables
are created when a call is executed,
before the method body is executed.
They are destroyed when method
body terminates.

04/09/2017

2

Scope of local variables
7

/** Return middle value of a, b, c (no ordering assumed) */
public static int middle(int a, int b, int c) {

if (b > c) {
int temp= b;
b= c;
c= temp;

}

if (a <= b) {
return b;

}

return Math.min(a, c);
}

Scope of local variable (where it
can be used): from its declaration
to the end of the block in which it
is declared.

block

Scope In General: Inside-out rule
8

Inside-out rule: Code in a construct can reference names declared in
that construct, as well as names that appear in enclosing constructs.
(If name is declared twice, the closer one prevails.)

/** A useless class to illustrate scopes*/
public class C{

private int field;
public void method(int parameter) {

if (field > parameter) {
int temp= parameter;

}
}

}

block method
class

Principle: declaration placement
9

/** Return middle value of a, b, c (no ordering assumed) */
public static int middle(int a, int b, int c) {

int temp;
if (b > c) {

temp= b;
b= c;
c= temp;

}
if (a <= b) {

return b;
}
return Math.min(a, c);

}

Principle: Declare a local variable
as close to its first use as possible.

Not good! No need for reader to
know about temp except when
reading the then-part of the if-
statement

Assertions promote understanding
10

/** Return middle value of a, b, c (no ordering assumed) */
public static int middle(int a, int b, int c) {

if (b > c) {
int temp= b;
b= c;
c= temp;

}

if (a <= b) {
return b;

}

return Math.min(a, c);
}

Assertion: Asserting that b <= c
at this point. Helps reader
understand code below.

/** Return middle value of a, b, c (no ordering assumed) */
public static int middle(int a, int b, int c) {

if (b > c) {
int temp= b;
b= c;
c= temp;

}
// b <= c
if (a <= b) {

return b;
}
// a and c are both greater than b
return Math.min(a, c);

}

Poll time! What 3 numbers are printed?
11

public class ScopeQuiz {
private int a;

public ScopeQuiz(int b) {
System.out.println(a);
int a= b + 1;
this.a= a;
System.out.println(a);
a= a + 1;

}

public static void main(String[] args) {
int a= 5;
ScopeQuiz s= new ScopeQuiz(a);
System.out.println(s.a);

}
}

A: 5, 6, 6
B: 0, 6, 6
C: 6, 6, 6
D: 0, 6, 0

Bottom-up/overriding rule
12

toString() { … }

Object
Person@20

Person

toString()

name "Turing"

turing Person@20Which method toString()
is called by

turing.toString() ?

The overriding rule, a.k.a. the
bottom-up rule:
To find out which method is
used, start at the bottom of the
object and search upward until a
matching one is found.

04/09/2017

3

Calling a constructor from a constructor
13

public class Person {
private String firstName;
private String lastName; // minute of hour, 0..59

/** Create a person with the given names. */
public Person(String f, String l) {

assert …;
firstName = f; lastName = l;

}

/** Create a person with the given full name. */
public Person(String fullName) {

firstName = …; lastName = …;
}

}
Want to change body
to call first constructor

Calling a constructor from a constructor
14

public class Person {
private String firstName;
private String lastName; // minute of hour, 0..59

/** Create a person with the given names. */
public Person(String f, String l) {

assert …;
firstName = f; lastName = l;

}

/** Create a person with the given full name. */
public Person(String fullName) {

this(…, …);
}

}

Use this (not Person) to call another
constructor in the class.
Must be first statement in constructor body!

/** Constructor: person “f n” */
public Person(String f, String l) {

first= n;
last= l;

}

/** Constructor: PhD with a year. */
public PhD(String f, String l, int y) {

super(f, l);
gradYear= y;

}

new PhD("David", "Gries", 1966);

Constructing with a Superclass
15

PhD@a0
Object

first last

toString()

Person

PhD

gradYear

getName()

null null

0

"David" "Gries"

1966

Use super (not Person) to
call superclass constructor.

Must be first statement
in constructor body!

About super
16

Within a subclass object,
super refers to the
partition above the one
that contains super.

Because of
keyword super,
the call toString
here refers to the
Person partition.

PhD@a0
Object

first last

toString()

Person

PhDgradYear

getName()

"David" "Gries"

1966

getName() { … super.getName() … }

Bottom-Up and Inside-Out
17

PhD@a0
Object

first last

toString()

Person

PhDgradYear

getName()

"David" "Gries"

1966

getName()

super

Person

sep ' '

Without OO …
18

Without OO, you would write a long involved method:

public double getName(Person p) {

if (p is a PhD)

{ … }

else if (p is a GradStudent)

{ … }
else if (p prefers anonymity)

{ … }

else …

}

OO eliminates need for many of
these long, convoluted methods,
which are hard to maintain.

Instead, each subclass has its own
getName.

Results in many overriding
method implementations, each of
which is usually very short

