
�1CS2110 Fall 2016 Assignment A7. Shortest Path Algorithm See CMS for the due date

Implementing Dijkstra’s shortest-path algoritm

Preamble
In this assignment, you use your solution to A6 in implementing Dijkstra’s shortest-path algorithm. This shortest-
path algorithm will then be used in the final project A8. We know your time is limited, so we have cut this assign-
ment to the minimum while still giving you the invaluable experience of implementing the algorithm. Our solution
is only 36 lines long. Further, we give you a JUnit testing class, which contains all the test cases you need.

Keep track of how much time you spend on A7; we will ask for it upon submission.

Read this whole document before beginning to code.

We suggest getting this assignment done well before the due date so you can study for the prelim and begin thinking
about A8.

Collaboration policy and academic integrity

You may do this assignment with one other person. Both members of the group should get on the CMS and do what
is required to form a group well before the assignment due date. Both must do something to form the group: one
proposes, the other accepts.

People in a group must work together. It is against the rules for one person to do some programming on this assign-
ment without the other person sitting nearby and helping. Take turns "driving" —using the keyboard and mouse.

With the exception of your CMS-registered group partner, you may not look at anyone else's code, in any form, or
show your code to anyone else (except the course staff), in any form. You may not show or give your code to anoth-
er student in the class.

Getting help

If you don't know where to start, if you don't understand testing, if you are lost, etc., please SEE SOMEONE IM-
MEDIATELY —an instructor, a TA, a consultant. Do not wait. A little in-person help can do wonders. See the course
homepage for contact information.

The release code
File 2016fa_a7Release.zip is an Eclipse project, which you can most easily import
into Eclipse using menu item Open Projects From File System. Here are the steps:

1. Use menu item File --> Open Project From File System
2. In the window that opens:

 select "archive"
 navigate to the downloaded file 2016fa_a7Release.zip
 select it
 click Open

3. If you get a choice of Folders to select, select only the
 first one, 2016fa_a7Release.zip_expanded
4. Want to change the project name? Use the refactoring tool.

You can, if you want, copy parts individually into a project. But that will require
putting JUnit4 o the build path, etc. The project should look like the diagram on
the right (your JRE System Libraries may be different).

Replace the code in Heap.java with the code in your Heap.java —or with our solution. Be sure to leave the package
statement at the top.

�2CS2110 Fall 2016 Assignment A7. Shortest Path Algorithm See CMS for the due date

Running the program
Class graph/Main contains method main. To run the program, open class Main in the Eclipse editor, select class
Main in the Package Explorer pane, and choose menu item Run -> Run. A GUI will open with a graph. You can get
a new randomly-generated graph using menu item Graph -> New Random Map. You can drag the nodes of the
graph around to make it easier to see a part of it. The text at the bottom of the window tells you what to do: Click a
start node, click an end node, and you will see in red the shortest from start to end(once you complete the assign-
ment). The Piazza A7 FAQs note will contain some seeds that generate fairly small graphs for you to play with.

What to do for this assignment
Your job is to implement method Paths.shortestPath. It is marked “TODO”. We give you everything else (you can
use our Heap.java if you want). The body of that shortestPath contains some comments, which you must follow.
Class student.Paths is the only file you have to change and submit.

Backpointers
The basic shortest-path algorithm calculates the shortest path from a start node to an end node. Here, we show, in the
context of A7, how to extend the algorithm to also calculate the shortest path itself. Often in programming, we write
a basic algorithm and then extend it to produce more information. It’s a standard practice/technique.

It is difficult to maintain the shortest path from a start node S to every other node. For example, look at the diagram
below and ask yourself: How, in start node S, would you store the shortest paths to all nodes? You would need to
store four paths, from S to A, to B, to C, and to D. If the graph had 1,000 nodes, you would be storing information
for 1,000 paths in S! There must be a better way.

We do something else. Look at the diagram to the right. The shortest path from S to D is (S, B, D). Therefore, in
node D, store the back-pointer on this path, i.e. the previous node on this path: B. We show it with a squiggly red
arrow. Similarly, the shortest path from S to B is (S, B), so node B contains a back-pointer to S.

As one more example, the shortest path from S to C is (S, A, C), so node C contains back-pointer A, A contains
back-pointer S, and S contains null as its back-pointer.

That’s it! With only one extra piece of info in each node, a back-pointer, we can store all the information needed to
give us the path from S to any node, but in reverse. To find the shortest path from S to some node D, we have to use
the back-pointers beginning in node D to construct the path. That takes time proportional to the length of the path.
Not bad!

The comments at the beginning of function shortestPath describe how to save back pointers as well as the distances
of nodes in the settled and frontier sets.

s

A

B

C

D

42

1
3

14 s

A

B

C

D

42

1

3
14

�3CS2110 Fall 2016 Assignment A7. Shortest Path Algorithm See CMS for the due date

Read this list carefully
1. Implement method Paths.shortestPath. It is marked with “// TODO …”. It must be an implementation of the

algorithm given on slide 34 (or so) of lecture 20 that is titled “Final algorithm”. The algorithm should be refined
to meet the specification and environment in which it is being implemented. See below for more info.

2. The final algorithm in the lecture slides stops when shortest paths to all nodes from node start have been deter-
mined. However, your algorithm should stop as soon as the shortest path from node start to node end has been
determined; once that is known, the method must not continue to calculate shortest paths. This is most easily
done by putting an appropriate test at the beginning of the main loop body and returning the result if the test is
met. If you do not do this, you get a 15-point deduction.

3. The method must return an empty list if there is no path from start to end. The return statement for this is already
included in the method.

4. Your method will not use array L for distances. Instead, a comment at the beginning of the body of Paths.short-
estPath explains how to maintain both the backpointer and the distance for each node in the settled and frontier
sets.

5. We have provided function Paths.constructPath, which constructs the path from the back-pointers. Use this
method, once the desired node has been reached. Study it to see how the path is constructed.

Debugging/testing
6. When testing/debugging, you will want some small maps to work with. For these, try seeds: 7, 16. 1, 6, 19, 18.

You can also change constant Graph.GraphGeneration.MAX_NODES to a small number. (GraphGeneration is a
static class within class Graph.)

When testing/debugging, you may want to print out the frontier at each iteration. You can easily do this:

 System.out.println("frontier is: " + frontier);
7. You can use the GUI to eyeball how your program is doing. However, we have provided complete test cases in

JUnit testing class PathsTester. If your method Paths.shortestPath passes those tests, you can consider the
method to be correct. In an item the Piazza A7 FAQs note, we will put an explanation of how our testing works
and how we generated the files it uses.

What to do submit
In class Paths, in the comment at the top, put the hours hh and minutes mm that you spent on this assignment. Write
a few lines about what you thought about this assignment. Submit on the CMS (only) file Paths.java. We know that
your function shortestPath uses class Heap, but we assume you have not changed Heap’s behavior by changing its
public methods. We will use our correct Heap in testing your function.

