
�1CS2110 Fall 2016 Assignment A1. PhD Genealogy. See CMS for the due date

CS2110 Fall 2016 Assignment A1  
PhD Genealogy

Introduction

Website http://genealogy.math.ndsu.nodak.edu contains the PhD genealogy of about 201,677 mathematicians
and computer scientists, showing their PhD advisors and advisees. Gries can trace his intellectual ancestry back to
Gottfried Wilhelm Leibniz (1646–1716), who dreamed of a “general method in which all truths of the reason would
be reduced to a kind of calculation”. Leibniz foresaw symbol manipulation and proofs as we know them today.

It’s a laborious, error-prone task to search the genealogy website by hand and construct a tree of someone’s PhD
ancestors, so we wrote a Java program to construct the tree for a given person. It uses a class PhD much like the one
you will build, but it has many more fields because of the complexity of the information on that website. The pro-
gram also uses a class that allows one to read a web page. At the appropriate time, we can show you this program
and discuss its construction, so you can learn how to write programs that crawl webpages. Another benefit of 2110!

Your task in this assignment is to develop a class PhD that will maintain information about the PhD of a person
and a JUnit class PhDTester to maintain a suite of test cases for class PhD. An object of class PhD will contain a
PhD’s name, gender, date of the PhD, the PhD’s known advisors, and the number of known advisees of the PhD.

The term PhD is not used in all countries! Gries’s degree is a Dr. Rerum Natura from MIT (Munich Institute of
Technology). It is abbreviated Dr. res nat, which Gries speaks as rare nut. In A1, we use only the term PhD.

Your last task before submitting the assignment will be to tell us how much time you spent on this assignment,
so please keep track. This will allow us to publish the mean, median, and maximum times, so you have an idea how
you are doing relative to others. It also helps us ensure that we don’t require too much of your time in this course.

Learning objectives
• Gain familiarity with the structure of a class within a record-keeping scenario (a common type of application)
• Learn about and practice reading carefully.
• Work with examples of good Javadoc specifications to serve as models for your later code.
• Learn the code presentation conventions for this course (Javadoc specs, indentation, short lines, etc.), which

help make your programs readable and understandable.
• Learn and practice incremental coding, a sound programming methodology that interleaves coding and testing.
• Learn about and practice thorough testing of a program using JUnit testing.
• Learn to write class invariants.
• Learn about preconditions of a method (requirements of a call on the method that the caller must follow) and

the use of the Java assert statement for checking preconditions.

The methods to be written are short and simple; the emphasis heret is on “good practices”, not complicated com-
putations.

Reading carefully

At the end of this document is a checklist of items for you to consider before submitting A1, showing how many
points each item is worth. Check each item carefully. A low grade is almost always due to lack of attention to detail
and to not following instructions —not to difficulty understanding OO. At this point, we ask you to visit the web-
page on the website of Fernando Pereira, research director for Google:

http://earningmyturns.blogspot.com/2010/12/reading-for-programmers.html

Did you read that webpage carefully? If not, read it now! The best thing you can do for yourself —and us— at this
point is to read carefully. This handout contains many details. Save yourself and us a lot of anguish by reading care-
fully as you do this assignment.

http://genealogy.math.ndsu.nodak.edu
http://earningmyturns.blogspot.com/2010/12/reading-for-programmers.html

�2CS2110 Fall 2016 Assignment A1. PhD Genealogy. See CMS for the due date

Collaboration policy

You may do this assignment with one other person. If you are going to work together, then, as soon as possible
—and certainly before you submit the assignment— get on the course CMS and form a group. Both people must do
something before the group is formed: one proposes, the other accepts. If you need help with the CMS, visit www.c-
s.cornell.edu/Projects/CMS/userdoc/.

If you do this assignment with another person, you must work together. It is against the rules for one person to
do some programming on this assignment without the other person sitting nearby and helping. You should take turns
“driving” —using the keyboard and mouse. If you are the weaker of two students on a team and you let your team-
mate do more than their share, you are hurting only yourself. You can’t learn without doing.

With the exception of your CMS-registered partner, you may not look at anyone else's code, in any form, or
show your code to anyone else, in any form. You may not look at solutions to similar previous assignments in 2110.
You may not show or give your code to another person in the class. While you can talk to others, your discussions
should not include writing code and copying it down.

Getting help
If you don't know where to start, if you don't understand testing, if you are lost, etc., please SEE SOMEONE

IMMEDIATELY —an instructor, a TA, a consultant. Do not wait. A little in-person help can do wonders.

Using the Java assert statement to test preconditions

A precondition is a constraint on the parameters of a method, and it is up to the user to ensure that method calls
satisfy the precondition. If a call does not, the method can do whatever it wants.

However, especially during testing and debugging, it is useful to use Java assert statements at the beginning of a
method to check that preconditions are true. For example, if the precondition is “this person’s name is at least one
character long”, use an assert statement like the following (using variable name for the field):

assert name != null && name.length() >= 1;

The additional test name != null is important! It protects against a null-pointer exception, which will happen
if the argument corresponding to name in the call is null. [This is important! Read it again!]

In this assignment, all preconditions of methods must be checked using assert statements in the method. Write the
assert statements as the first step in writing the method body, so that they are always there during testing and de-
bugging. Also, when you generate a new JUnit class, make sure the VM argument -ea is present in the Run Configu-
ration. Assert statements are helpful in testing and debugging. In the A1 FAQ on the Piazza, we will explain how one
can test that assert statements are written properly.

How to do this assignment

Scan the whole assignment before starting. Then, develop class PhD and test it using class PhDTester in the
following incremental, sound way. This methodology will help you complete this (and other) programming tasks
quickly and efficiently. If we detect that you did not develop it this way, points will be deducted.

1. Create a new Eclipse project, called a1PhD. In a1PhD, create a new class, PhD. It must, repeat must be in the
default package, and it does not need a method main. Insert the following as the first lines of file PhD.java:

/** NetId: nnnnn, nnnnn. Time spent: hh hours, mm minutes. 
 An instance maintains info about the PhD of a person. */

Remove the constructor with no parameters, since it will not be used and its use can leave an object in an incon-
sistent state (see below, the class invariant).

http://www.cs.cornell.edu/Projects/CMS/userdoc/

�3CS2110 Fall 2016 Assignment A1. PhD Genealogy. See CMS for the due date

2. In class PhD, declare the following fields (you choose the names of the fields), which are to hold information
describing a person with a PhD. Make these fields private and properly comment them (see the "The class in-
variant" section below).

Note: You must break long lines (including comments) into two or more lines so that the reader does not have to
scroll right to read them. This makes your code much easier for us and you to read. A good guideline: No line is
more than 80 characters long.

‣ name (a String). Name of the person with a PhD, a String of length > 0.
‣ gender of the person (a char). 'F' for female and 'M' for male.
‣ month PhD was awarded (an int). In range 1..12 with 1 being January, etc.
‣ year PhD was awarded (an int).
‣ first advisor of this person (of type PhD). The first PhD advisor of this person —null if unknown.
‣ second advisor of this person (of type PhD). The second advisor of this person —null if unknown or if the

person had only one advisor. If the first-advisor field is null, the second advisor field must be null.
‣ number of PhD advisees of this person.

About the field that contains the number of advisees: The user never gives a value for this field; it is com-
pletely under control of the program. For example, whenever a PhD p is given an advisor m, m’s number of ad-
visees must be increased by 1. It is up to the program, not the user, to increase the field.

THIS IS IMPORTANT. Do NOT misinterpret the number of advisees as the number of advisors. You will lose
a lot of points. This has happened in the past, due to lack of careful reading. My advisees are those I am advis-
ing; my advisor is the person who advised me. This is important, repeat, important.

The class invariant. Comments should accompany the declarations of all fields to describe what the fields
means, what constraints hold for them, and what the legal values are for the fields. For example, for the name-
of-the-person field, state in a comment that the field contains the person’s name and must be a string of at least 1
character. The collection of the comments on these fields is called the class invariant. Here is an example of a
declaration with a suitable comment. Note that the comment does not give the type (since it is obvious from the
declaration), it does not use noise phrases like “this field contains …”, and it does contain constraints on the
field.

int month; // month PhD was awarded. In range 1..12, with 1 meaning January, etc.

Note again that we did not put “(an int)” in the comment. That information is already known from the decla-
ration. Don’t put such unnecessary things in the comments.

Whenever you write a method (see below), look through the class invariant and convince yourself that the
class invariant still holds when the method terminates. This habit will help you prevent or catch bugs later on.

3. In Eclipse, start a new JUnit test class and call it PhDTester. You can do this using menu item File —> New
—> JUnit Test Case (add the JUnit 4 library, if asked).

4. Below, we describe four groups A, B, C, and D of methods. Work with one group at a time, performing steps
(1)..(4). Do not go on to the next group until the group you are working on is thoroughly tested and cor-
rect.

(1) Write the Javadoc specifications for each method in that group. Make sure they are complete and correct —
look at the specs we give you below. Copy-and-paste from this handout to make it easy.

(2) Write the method bodies, starting with assert statements (unless they can’t be the first statement) for the pre-
conditions.

(3) Write one test procedure for this group in class PhDTester and add test cases to it for all the methods in
the group.

�4CS2110 Fall 2016 Assignment A1. PhD Genealogy. See CMS for the due date

(4) Test the methods in the group thoroughly.

Discussion of the groups of methods. The descriptions below represent the level of completeness and precision
required in Javadoc specification-comments. In fact, you may (should) copy and paste these descriptions to create
the first draft of your Javadoc comments. If you do not cut and paste, adhere to the conventions we use, such as
using the prefix “Constructor: …” and double-quotes to enclose an English boolean assertion. Using a consistent
set of good conventions in this class will help us all.

Method specs do not mention fields because the user may not know what the fields are, or even if there are
fields. The fields are private. Consider class JFrame: you know what methods it has but not what fields, and the
method specs don’t mention fields. In the same way, a user of class PhD will know the methods but not the fields.

The names of your methods must match those listed below exactly, including capitalization. The number of
parameters and their order must also match: any mismatch will cause our testing programs to fail and will result in
loss of points for correctness. Parameter names will not be tested —change the parameter names if you want.

Look carefully at method name numberOfAdvisEES; it must be written like this; we are attempting to make
sure you know it is the number of advisees and not advisors. Copy and paste.

In this assignment, you may not use if-statements, conditional expressions, or loops.

Group A: The first constructor and the getter methods of class PhD.

Consider the constructor. Based on its specification, figure out what value it should place in each of the 7 fields
to make the class invariant true. Then, write a procedure named testConstructor1 in PhDTester to make
sure that the constructor fills in ALL fields correctly. The procedure should: Create one PhD object using the con-
structor and then check, using the getter methods, that all fields have the correct values. Since there are 7 fields,
there should be 7 assertEquals statements. As a by-product, all getter methods are also tested.

We advise creating a second PhD (in testConstructor1) of the other sex than the one first created and
testing —using function isFemale()— that its sex was properly stored.

Group B: the setter/mutator methods. Note: methods addAdvisor1 and addAdvisor2 must change fields of
both this PhD and its parent in order to maintain the class invariant —the advisor’s number of advisees changes!

When testing the setter methods, you will have to create one or more PhD objects, call the setter methods, and
then use the getter methods to test whether the setter methods set the fields correctly. Good thing you already test-

Constructor Description (and suggested javadoc specification)
PhD(String n, char g,  
int m, int y)

Constructor: an instance for a person with name n, gender g, PhD month m,  
 and PhD year y. Its advisors are unknown, and it has no advisees.
Precondition: n has at least 1 char. m is in 1..12. g is 'F' for female or 'M' for male.

Getter Method Description (and suggested javadoc specification) Return Type
getName() Return the name of this person. String
getYear() Return the year this person got their PhD. int
getMonth() Return the month this person got their PhD. int
isFemale() Return the value of the sentence "This person is a female." boolean
advisor1() Return the first advisor of this Phd (null if unknown). PhD (not String!)

advisor2()
 Return the second advisor of this PhD (null if unknown or
non-existent).

PhD (not String!)

numberOfAdvisEES() Return the number of PhD advisees of this person. int

�5CS2110 Fall 2016 Assignment A1. PhD Genealogy. See CMS for the due date

ed the getters! Note that these setter methods may change more than one field; your testing procedure should
check that all fields that may be changed are changed correctly.

We are not writing methods that change an existing father or mother to a different PhD. This would require if-
statements, which are not allowed. Read preconditions of methods carefully.

IMPORTANT. In addAdvisor1(p), p gets a new advisee, so p’s number of advisees increases. Do not mistake
the number-of-advisees field for the number of advisors. There is a difference. Get this wrong? Lose lots of points.

Group C: Two more constructors. The test procedure for group C has to create a PhD using the constructor given
below. This will require first creating two PhD objects using the first constructor and then checking that the new
constructor sets all 7 fields properly —and also the number of advisees of ad1 and ad2.

Group D: Write two comparison methods —to see which of two people got their PhD first and to see whether two
people are “intellectual siblings” (that means that they are not the same object and they have a non-null advisor in
common). Write these using only boolean expressions (with !, &&, and || and relations <, <=, ==, etc.). Do not use
if-statements, switches, addition, multiplication, etc. Each is best written as a single return statement.

5. In Eclipse, click men item Project -> Generate Javadoc. In the window that opens, make sure you are generat-
ing Javadoc for project a1PhD, using visibility public and storing it in a1PhD/doc. Then open doc/index.html.
You should see your method and class specifications. Read through them from the perspective of someone who
has not read your code. Fix the comments in class PhD, if necessary, so that they are appropriate to that perspec-
tive. You must be able to understand everything there is to know about writing a call on each method from the
specification that you see by clicking the Javadoc button —that is, without knowing anything about the private

Setter Method Description (and suggested javadoc specification)
addAdvisor1(PhD p) Add p as the first advisor of this person.

Precondition: the first advisor is unknown and p is not null.
addAdvisor2(PhD p) Add p as the second advisor of this person.

Precondition: The first advisor (of this person) is known, the second advisor
is unknown, p is not null, and p is different from the first advisor.

Constructors Description (and suggested javadoc specification)
PhD(String n, char g, int
m, int y, PhD adv)

Constructor: a PhD with name n, gender g, PhD month m, PhD year y,
 first advisor adv, and no second advisor.
 Precondition: n has at least 1 char, g is 'F' for female or 'M' for male,
 m is in 1..12, and adv is not null.

PhD(String n, char g, int
m, int y, PhD adv1, PhD
adv2)

Constructor: a PhD with name n, gender g, PhD month m, PhD year y,
 first advisor adv1, and second advisor adv2.
Precondition: n has at least 1 char. g is 'F' for female or 'M' for male.
m is in 1..12. adv1 and adv2 are not null. adv1 and adv2 are different.

Comparison Method Description (and suggested javadoc specification) Return type
gotAfter(PhD p) Return value of "p is not null and this person got their

PhD after p did."
boolean

arePhDSiblings(PhD p) Return value of "this person and p are intellectual  
 siblings."
Precondition: p is not null.

boolean

�6CS2110 Fall 2016 Assignment A1. PhD Genealogy. See CMS for the due date

fields. Thus, the fields should not be mentioned. Then, and only then, add a comment at the top of file PhD.java
saying that you checked the Javadoc output and it was OK.

6. Check carefully that each method that adds an advisor for a PhD updates the advisor’s number of advisees. Four
methods do this. Make sure the field contains the number of advisees and not the number of advisors.

7. Review the learning objectives and reread this document to make sure your code conforms to our instructions.
Check each of the following, one by one, carefully. Note that 50 points are given for the items below and 50
points are given for actual correctness of methods.

o 5 Points. Are all lines short enough that horizontal scrolling is not necessary (about 80 chars is long
enough). Do you have a blank line before the specification of each method and no blank line after it?

o 10 Points. Is your class invariant correct —are all fields defined and all field constraints given?

o 5 Points. Is the name of each method and the types of its parameters exactly as stated in step 4 above?
(The simplest way to ensure this was to copy and paste!) More points may be deducted if we have diffi-
culty fixing your submission so that it compiles with our grading program.

o 10 Points. Are all specifications complete, with any necessary preconditions? Remember, we specified
every method carefully and suggested copying our specs and pasting them into your code. Are they in
Javadoc comments?

o 5 points. Do you have assert statements in each method that has a precondition to check that precondi-
tion?

o 5 Points. Did you check the Javadoc output and then put a comment at the top of class PhD?

o 10 Points. Did you write one (and only one) testing method for each of the groups A, B, C, and D of
step 4? Thus, do you have four (4) test procedures? Does each procedure have a name that gives the
reader an idea what the procedure is testing, so that a specification is not necessary? Did you properly
test? For example, in testing each constructor, did you make sure to test that all 7 fields have the correct
value? Do you have enough test cases? For example, testing whether one date comes before another
date, when each is given by a month and a year, probably requires at least 5 test cases.

8. Change the first line of file PhD.java: replace “nnnnn” by your netids, “hh” by the number of hours spent, and
“mm” by the number of minutes spent. If you are doing the assignment alone, remove the second “nnnn”. For
example, suppose george and gries spent 4 hours and 30 minutes. Then the first line would be as shown below.

 /** NetIds: mdg39, djg17. Time spent: 4 hours, 30 minutes.

Being careful in changing this line will make it easier for us to automate the process of calculating the median,
mean, and max times. Be careful: Help us.

9. Upload files PhD.java and PhDTester.java on the CMS by the due date. Do not submit any files with the
extension/suffix .java~ (with the tilde) or .class. It will help to set the preferences in your operating system so
that extensions always appear.

