
2013.2.1	

1	

Debug perspective: Click on this icon.	

In pop-window, select	

Debug. Debug perspective opens (next slide)	

	

Recitation 3. Debugging. Start on Exceptions	

 Use pane to see breakpoints	

 Use pane to see variables/values (next slide)	

	

Debug perspective	

Breakpoint: a line of program that is set so that execution
will stop when it is reached during debugging.	

Setting a breakpoint	

Put mouse here, ���
right click,	

select Toggle Breakpoint
from contextual menu.
The breakpoint is set and
the dot appears.	

	

If it was already set, it is
unset.	

Choose Run > Debug. Execution starts but stops at the
first line with a breakpoint set	

Running the debugger	

Parameter and its value	

Click icon Step Over to have statement executed. 	

Statement has been executed 	

 x appears with its value	

 Step Into Step Over	

Step into and Step over do the same thing except for
executing a call.	

	

Step over executes a call in one step.	

	

Step into makes the first statement in body of method
being called the next statement to execute, so you can
see detailed execution of method body.	

2013.2.1	

2	

Division by 0 causes an “Exception to be thrown”.
program stops with output:	

public static void main(String[] args) {	

 int b= 3/0; 	

 }	

Exception in thread "main" ���
 java.lang.ArithmeticException: / by zero	

	

at C.main(C.java:7)	

Recitation 3. Exceptions	

The “Exception”
that is “thrown”	

Happened in main, line 7	

This is line 7	

parseInt throws a NumberFormatException	

public static void main(String[] args) {	

 … code to store a string in s —expected to be an int	

 int b= Integer.parseInt(s);	

 }	

/** Parse s as a signed decimal integer and return
 the integer. If s does not contain a signed decimal
 integer, throw a NumberFormatException. */
public static int parseInt(String s)

parseInt, when it find an error, does not know what caused the
error and hence cannot do anything intelligent about it. So it
“throws the exception” to the calling method. The normal
execution sequence stops! See next slide	

parseInt throws a NumberFormatException	

public static void main(String[] args) {	

 int b= Integer.parseInt(“3.2”);	

 }	

We see stack of calls that are not completed!	

Exception in thread "main" java.lang.NumberFormatException: For input string: "3.2"	

 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)	

 at java.lang.Integer.parseInt(Integer.java:458)	

 at java.lang.Integer.parseInt(Integer.java:499)	

 at C.main(C.java:6)	

Output is:	

Found error
on line 458	

called from
line 499	

called from
C.main, line 6	

3.2 not
an int	

Exceptions and Errors	

	

In Java, there is a class Throwable:	

	

	

	

	

Throwable@x1	

“/ by zero”	

detailMessage	

	

getMessage()	

Throwable()
Throwable(String)	

When some kind of error
occurs, an Exception is
“thrown” —you’ll see
what this means later.	

An Exception is an instance
of class Throwable	

(or one of its subclasses) 	

	

Two constructors in class Throwable. Second one
stores its String parameter in field detailMessage.	

Exceptions and Errors	

So many different kind of exceptions that���

we have to organize them.	

	

	

	

	

 “/ by zero”	

 detailMessage	

getMessage()	

Exception	

RuntimeException	

ArithmeticException	

Throwable	

Exception	

 Error	

RuntimeException	

ArithmeticException	

Do nothing
with these	

 You can
"handle"

these	

Throwable() Throwable(String)	

Exc…() Exc…(..)	

RunTimeE…() RunTimeE…(…)	

Arith…E…() Arith…E…(…)	

Throwable@x1	

Subclass: 2 constructors, no
other methods, no fields.
Constructor calls superclass
constructor	

	

03 public class Ex { 	

04 public static void main(…) {	

05 second();	

06 }	

	

07	

08 public static void second() {	

09 third();	

10 }	

11	

	

12 public static void third() {	

13 int x= 5 / 0;	

14 }	

15 }	

Class:	

Call	

	

 Output	

	

ArithmeticException: / by zero	

 at Ex.third(Ex.java:13)	

 at Ex.second(Ex.java:9)	

 at Ex.main(Ex.java:5)	

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)	

 at sun.reflect.NativeMethodAccessorImpl.invoke(…)	

 at sun.reflect.DelegatingMethodAccessorImpl.invoke(…)	

 at java.lang.reflect.Method.invoke(Method.java:585)	

	

	

AE	

a0	

	

	

AE	

a0	

	

	

AE	

a0	

Ex.main();	

Creating and throwing and Exception	

2013.2.1	

3	

	

public class Ex { 	

 public static void main(…) {	

 second();	

 }	

	

	

 public static void second() {	

 third();	

 }	

	

	

 public static void third() {	

 throw new ArithmeticException("I threw it");	

 }	

}	

	

ArithmeticException: I threw it	

 at Ex.third(Ex.java:14)	

 at Ex.second(Ex.java:9)	

 at Ex.main(Ex.java:5)	

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)	

 at sun.reflect.NativeMethodAccessorImpl.invoke(…)	

 at sun.reflect.DelegatingMethodAccessorImpl.invoke(…)	

 at java.lang.reflect.Method.invoke(Method.java:585)	

	

	

AE	

a0	

	

	

AE	

a0	

	

	

AE	

a0	

Class:	

Call	

	

 Output	

Ex.main();	

throw statement	

/** An instance is an exception */	

public class OurException extends Exception {	

 	

 /** Constructor: an instance with message m*/	

 public OurException(String m) {	

 super(m);	

 }	

 	

 /** Constructor: an instance with no message */	

 public OurException() {	

 super();	

 }	

}	

How to write an exception class	

/** Illustrate exception handling */	

public class Ex { 	

 public static void main() {	

 second();	

 }	

 public static void second() {	

 third();	

 }	

 public static void third() {	

 throw new���
 OurException("mine");	

 }	

}	

If a method throws an Exception	

that is not a subclass of
RuntimeException, the method
needs a throws clause.	

	

Don’t be concerned with this issue.	

Just write your method and, if Java
says it needs a throws clause, put
one in	

Won’t compile.
Needs a “throws
clause, see next
slide	

The “throws” clause 	

/** Class to illustrate exception handling */	

public class Ex {	

 public static void main() throws OurException {	

 second();	

 }	

 public static void second() throws OurException {	

 third();	

 }	

 public static void third() throws OurException {	

 throw new OurException("mine");	

 }	

	

If Java asks for it, insert the throws clause.	

Otherwise, don’t be concerned with it.	

Try statement: catching a thrown exception	

public class Ex1 {	

 public static void main() throws MyException{	

 try {	

 second();	

 }	

 catch (MyException ae) {	

 System.out.println	

 ("Caught MyException: " + ae);	

 }	

 System.out.println	

 ("procedure first is done");	

 }	

 public static void second() throws MyException {	

 third();	

 }	

 public static void third() throws MyException {	

 throw new MyException(”yours");	

 }	

}	

	

Execute the try-
block. If it finishes

without throwing
anything, fine.	

If it throws a
MyException

object, catch it
(execute the catch
block); else throw

it out further.	

/** Input line supposed to contain an int. (whitespace on either side OK).	

 Read line, return the int. If line doesn’t contain int, ask user again���
 */	

public static int readLineInt() {	

 String input= readString().trim();	

 // inv: input contains last input line read; previous	

 // lines did not contain a recognizable integer.	

 while (true) { 	

 try {	

 return Integer.valueOf(input).intValue();	

 }	

 catch (NumberFormatException e) {	

 System.out.println("Input not int. Must be an int like");	

 System.out.println("43 or -20. Try again: enter an int:");	

 input= readString().trim();	

 } 	

 }	

 }	

Useful example
of catching
thrown object	

readLineInt continues to read a line from
keyboard until user types and integer	

