

## GRAPHS

## Announcements

${ }_{\square}$ Prelim 2: Two and a half weeks from now
-Tuesday, Aprill 6, 7:30-9pm, Statler
$\square$ Exam conflicts?
$\square$ We need to hear about them and can arrange a makeup

- It would be the same day but 5:30-7:00
-Old exams available on the course website


## These are not Graphs


...not the kind we mean, anyway

## These are Graphs



## Applications of Graphs

$\square$ Communication networks
$\square$ Routing and shortest path problems
$\square$ Commodity distribution (flow)
$\square$ Traffic control
$\square$ Resource allocation
$\square$ Geometric modeling

## Graph Definitions

$\square$ A directed graph (or digraph) is a pair (V, E) where
$\square \mathrm{V}$ is a set
$\square E$ is a set of ordered pairs ( $u, v$ ) where $u, v \square V$

- Usually require u v (i.e., no self-loops)
$\square$ An element of $V$ is called a vertex ( $p l$. vertices) or node
$\square$ An element of $E$ is called an edge or arc
$\square|V|=$ size of $V$, often denoted $n$
$\square|E|=$ size of $E$, often denoted $m$


## Example Directed Graph (Digraph)



$$
\begin{aligned}
V= & \{a, b, c, d, e, f\} \\
E= & \{(a, b),(a, c),(a, e),(b, c),(b, d),(b, e),(c, d), \\
& (c, f),(d, e),(d, f),(e, f)\} \\
|V|= & 6,|E|=11
\end{aligned}
$$

## Example Undirected Graph

An undirected graph is just like a directed graph, except the edges are unordered pairs (sets) $\{u, v\}$

Example:


$$
\begin{aligned}
V= & \{a, b, c, d, e, f\} \\
E= & \{\{a, b\},\{a, c\},\{a, e\},\{b, c\},\{b, d\},\{b, e\},\{c, d\},\{c, f\}, \\
& \{d, e\},\{d, f\},\{e, f\}\}
\end{aligned}
$$

## Some Graph Terminology

$\square$ Vertices $u$ and $v$ are called the source and sink of the directed edge ( $u, v$ ), respectively
$\square$ Vertices $u$ and $v$ are called the endpoints of ( $u, v$ )

- Two vertices are adjacent if they are connected by an edge
$\square$ The outdegree of a vertex $u$ in a directed graph is the number of edges for which $u$ is the source
$\square$ The indegree of a vertex $v$ in a directed graph is the number of edges for which $v$ is the sink
$\square$ The degree of a vertex $u$ in an undirected graph is the number of edges of which $u$ is an endpoint



## More Graph Terminology


$\square$ A path is a sequence $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ of vertices such that $\left(v_{i}, v_{i+1}\right) \in E, 0 \leq i \leq p-1$
$\square$ The length of a path is its number of edges
$\square$ In this example, the length is 5
$\square$ A path is simple if it does not repeat any vertices
$\square$ A cycle is a path $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ such that $v_{0}=v_{p}$
$\square$ A cycle is simple if it does not repeat any vertices except the first and last
$\square$ A graph is acyclic if it has no cycles
$\square$ A directed acyclic graph is called a dag ${ }^{\text {a }}$


## Is This a Dag?



## $\square$ Intuition:

$\square$ If it's a dag, there must be a vertex with indegree zero - why?
$\square$ This idea leads to an algorithm
$\square$ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

## Is This a Dag?



## $\square$ Intuition:

$\square$ If it's a dag, there must be a vertex with indegree zero - why?
$\square$ This idea leads to an algorithm
$\square$ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

## Is This a Dag?



## $\square$ Intuition:

$\square$ If it's a dag, there must be a vertex with indegree zero - why?
$\square$ This idea leads to an algorithm
$\square$ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

## Is This a Dag?



## $\square$ Intuition:

$\square$ If it's a dag, there must be a vertex with indegree zero - why?
$\square$ This idea leads to an algorithm
$\square$ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

## Is This a Dag?



## $\square$ Intuition:

$\square$ If it's a dag, there must be a vertex with indegree zero - why?
$\square$ This idea leads to an algorithm
$\square$ A digraph is a dag if and only if we can iteratively delete indegree- 0 vertices until the graph disappears

## Is This a Dag?



## $\square$ Intuition:

$\square$ If it's a dag, there must be a vertex with indegree zero - why?
$\square$ This idea leads to an algorithm
$\square$ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

## Is This a Dag?



## $\square$ Intuition:

$\square$ If it's a dag, there must be a vertex with indegree zero - why?
$\square$ This idea leads to an algorithm
$\square$ A digraph is a dag if and only if we can iteratively delete indegree- 0 vertices until the graph disappears

## Is This a Dag?



## $\square$ Intuition:

$\square$ If it's a dag, there must be a vertex with indegree zero - why?
$\square$ This idea leads to an algorithm
$\square$ A digraph is a dag if and only if we can iteratively delete indegree- 0 vertices until the graph disappears

## Is This a Dag?



## $\square$ Intuition:

$\square$ If it's a dag, there must be a vertex with indegree zero - why?
$\square$ This idea leads to an algorithm
$\square$ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

## Is This a Dag?



## $\square$ Intuition:

$\square$ If it's a dag, there must be a vertex with indegree zero - why?
$\square$ This idea leads to an algorithm
$\square$ A digraph is a dag if and only if we can iteratively delete indegree- 0 vertices until the graph disappears

## Is This a Dag?

## $\square$ Intuition:

$\square$ If it's a dag, there must be a vertex with indegree zero - why?
$\square$ This idea leads to an algorithm
$\square$ A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

## Topological Sort

$\square$ We just computed a topological sort of the dag
$\square$ This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices

$\square$ Useful in job scheduling with precedence constraints

## Graph Coloring

$\square$ A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

$\square$ How many colors are needed to color this graph?

## Graph Coloring

$\square$ A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

$\square$ How many colors are needed to color this graph?
$\square 3$

## An Application of Coloring

$\square$ Vertices are jobs
$\square$ Edge ( $u, v$ ) is present if jobs $u$ and $v$ each require access to the same shared resource, and thus cannot execute simultaneously
$\square$ Colors are time slots to schedule the jobs
$\square$ Minimum number of colors needed to color the graph $=$ minimum number of time slots required


## Planarity

$\square$ A graph is planar if it can be embedded in the plane with no edges crossing

$\square$ Is this graph planar?

## Planarity

$\square$ A graph is planar if it can be embedded in the plane with no edges crossing

$\square$ Is this graph planar?
$\square$ Yes

## Planarity

$\square$ A graph is planar if it can be embedded in the plane with no edges crossing

$\square$ Is this graph planar?
$\square$ Yes

## Detecting Planarity

$\square$ Kuratowski's Theorem


A graph is planar if and only if it does not contain a copy of $K_{5}$ or $K_{3,3}$ (possibly with other nodes along the edges shown)

## The Four-Color Theorem

## Every planar graph is 4-colorable

(Appel \& Haken, 1976)


## Bipartite Graphs

$\square$ A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that all edges go between the two sets


## Bipartite Graphs

$\square$ The following are equivalent
$\square G$ is bipartite
$\square G$ is 2 -colorable
$\square$ G has no cycles of odd length


## Traveling Salesperson


$\square$ Find a path of minimum distance that visits every city

## Representations of Graphs



Adjacency List
Adjacency Matrix


| 1 | 2 | 3 | 4 |  |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 | 1 |
| 2 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 0 |
|  | 0 | 1 | 1 | 0 |

## Adjacency Matrix or Adjacency List?

$\square \mathrm{n}=$ number of vertices
$\square \mathrm{m}=$ number of edges
$\square d(u)=$ degree of $u=$ number of edges leaving U
$\square$ Adjacency Matrix

- Uses space $O\left(n^{2}\right)$
$\square$ Can iterate over all edges in time $\mathrm{O}\left(\mathrm{n}^{2}\right)$
$\square$ Can answer "Is there an edge from $u$ to v ?" in $\mathrm{O}(1)$ time
$\square$ Better for dense graphs (lots of edges)
- Adjacency List
- Uses space O(m+n)
- Can iterate over all edges in time O(m+n)
- Can answer "Is there an edge from u to v?" in O(d(u)) time
- Better for sparse graphs (fewer edges)


## Graph Algorithms

- Search
- depth-first search
- breadth-first search
- Shortest paths
- Dijkstra's algorithm
- Minimum spanning trees
- Prim's algorithm
-Kruskal's algorithm


## Depth-First Search

- Follow edges depth-first starting from an arbitrary vertex r, using a stack to remember where you came from
- When you encounter a vertex previously visited, or there are no outgoing edges, retreat and try another path
- Eventually visit all vertices reachable from $r$
- If there are still unvisited vertices, repeat
- O(m) time


## Depth-First Search



## Breadth-First Search

Same, except use a queve instead of a stack to determine which edge to explore next
$\square$ Recall: A stack is last-in, first-out (LIFO)
$\square$ A queue is first-in, first-out (FIFO)

## Breadth-First Search



## Summary

$\square$ We've seen an introduction to graphs and will return to this topic next week on Tuesday
$\square$ Definitions
$\square$ Testing for a dag

- Depth-first and breadth-first search
$\square$ On Thursday Ken and David will be out of town.
$\square$ Dexter Kozen will do a lecture on induction
$\square$ We use induction to prove properties of graphs and graph algorithms, so the fit is good

