

Sample Problem: Searching

- Determine if sorted array a contains integer v
- First solution: Linear Search (check each element)
/** return true iff v is in a */
static boolean find(int[] a, int v) \{
for (int $\mathrm{i}=0 ; \mathrm{i}<$ a.length; $\mathrm{i}++$) \{
if ($\mathrm{a}[\mathrm{i}]=\mathrm{v}$) return true;
\}
return false;
\}
\}
for (int $x: a)$ \{
if ($x==v$) return true;
\}
return false;

What Makes a Good Algorithm?

\square Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?
\square Well... what do we mean by better?
\square Faster?

- Less space?
\square Easier to code?
- Easier to maintain?
- Required for homework?
\square How do we measure time and space for an algorithm?

Sample Problem: Searching

Second solution: static boolean find (int[] a, int v) \{ Binary Search

Still returning
true iff v is in a

Keep true: all occurrences of v are in
b[low..high]
int low= 0;
int high= a.length -1 ;
while (low <= high) \{
int mid $=($ low + high $) / 2$;
if $(\mathrm{a}[\mathrm{mid}]=\mathrm{v}$) return true;
if $(\mathrm{a}[\mathrm{mid}]<\mathrm{v})$
low $=$ mid +1 ;
else high=mid-1;
\}
return false;
\}

One Basic Step $=$ One Time Unit

Basic step:

- Input/output of scalar value
- Access value of scalar variable, array element, or object field
- assign to variable, array element, or object field
- do one arithmetic or logical operation
- method invocation (not counting arg evaluation and execution of method body)
- For conditional: number of basic steps on branch that is executed
- For loop: (number of basic steps in loop body) * (number of iterations)
- For method: number of basic steps in method body (include steps needed to prepare stack-frame)

Runtime vs Number of Basic Steps

Is this cheating?

- The runtime is not the same as number of basic steps
- Time per basic step varies depending on computer, compiler, details of code...

Well ... yes, in a way
\square But the number of basic steps is proportional to the actual runtime

Which is better?

- n or n^{2} time?
- 100 n or n^{2} time?
- $10,000 \mathrm{n}$ or n^{2} time?

As n gets large, multiplicative constants become less important
Simplifying assumption \#3: Ignore multiplicative constants

Big-O Examples

Claim: $100 n+\log n$ is $O(n) \quad$ Claim: $\log _{B} n$ is $O\left(\log _{A} n\right)$
We know $\log n \leq n$ for $n \geq 1$
since $\log _{B} n$ is
$\left(\log _{B} A\right)\left(\log _{A} n\right)$
So $100 n+\log n \leq 101 n$
for $n \geq 1$
So by definition, Question: Which grows $100 n+\log n$ is $O(n)$

$$
\text { for } c=101 \text { and } N=1
$$

To prove that $f(n)$ is $O(g(n))$:

- Find N and c such that $f(n) \delta c g(n)$ for all $n \varepsilon N$
- Pair (c, N) is a witness pair for proving that $f(n)$ is $O(g(n))$

Big-O Examples

```
Let f(n)=3n
    |}(\textrm{n})\mathrm{ is O(n}\mp@subsup{n}{}{2}
    \squaref(n) is O(n3)
    |f(n) is O(n)
    \square...
    g(n)=4n logn+34n-89
        \squareg(n) is O(n logn)
        \squareg(n) is O(n
    h(n)=20\cdot\mp@subsup{2}{}{n}+40n
        h(n) is O(2n)
        a(n)=34
        \squarea(n) is O(1)
        rapidly) matters
```


Problem-Size Examples

\square Consisider a computing device that can execute 1000 operations per second; how large a problem can we solve?

	1 second	1 minute	1 hour
n	1000	60,000	$3,600,000$
$\mathrm{n} \log \mathrm{n}$	140	4893	200,000
n^{2}	31	244	1897
$3 \mathrm{n}^{2}$	18	144	1096
n^{3}	10	39	153
2^{n}	9	15	21

| Worst-Case/Expected-Case Bounds |
| :--- | :--- |

Simplifying Assumptions

Use the size of the input rather than the input itself - n
Count the number of "basic steps" rather than computing exact time

Ignore multiplicative constants and small inputs (order-of, big-O)

Determine number of steps for either
-worst-case
-expected-case
These assumptions allow us to analyze algorithms effectively

Worst-Case Analysis of Searching

Comparison of Algorithms

Comparison of Algorithms

Remarks

Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity

- Example: you can usually ignore everything that is not in the innermost loop. Why?

Main difficulty:
\square Determining runtime for recursive programs

Analysis of Matrix Multiplication

Multiply n-by-n matrices A and B :
Convention, matrix problems measured in terms of n , the number of rows, columns

- Input size is really $2 n^{2}$, not n
-Worst-case time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
-Expected-case time:O(n³)
$\mathrm{c}[\mathrm{i}][\mathrm{j}]=0$;
for ($k=0 ; k<n ; k++$)
$\mathrm{c}[\mathrm{i}][\mathrm{j}]+=\mathrm{a}[\mathrm{i}][\mathrm{k}] * \mathrm{~b}[\mathrm{k}][\mathrm{j}] ;$
\}

Why Bother with Runtime Analysis?

Computers so fast that we can do whatever we want using simple algorithms and data structures, right?

Not really - data-
structure/algorithm
improvements can be a very
big win
Scenario:
\square A runs in $\mathrm{n}^{2} \mathrm{msec}$
$\square A^{\prime}$ runs in $\mathrm{n}^{2} / 10 \mathrm{msec}$
$\square \mathrm{B}$ runs in $10 \mathrm{n} \log \mathrm{n}$ msec $\quad 1$ day $=86,400 \mathrm{sec} \approx 10^{5} \mathrm{sec}$

1,000 days ≈ 3 years
Problem of size $\mathrm{n}=10^{3}$
-A: $10^{3} \mathrm{sec} \approx 17$ minutes

- $\mathrm{A}^{\prime}: 10^{2} \mathrm{sec} \approx 1.7$ minutes
-B: $10^{2} \mathrm{sec} \approx 1.7$ minutes
Problem of size $\mathrm{n}=10^{6}$
-A: $10^{9} \mathrm{sec} \approx 30$ years
- A ': $10^{8} \mathrm{sec} \approx 3$ years
-B: $2 \cdot 10^{5} \mathrm{sec} \approx 2$ days

Summary

\square Asymptotic complexity

- Used to measure of time (or space) required by an algorithm
\square Measure of the algorithm, not the problem
\square Searching a sorted array
- Linear search: $\mathrm{O}(\mathrm{n})$ worst-case time
- Binary search: O(log n) worst-case time
\square Matrix operations:
\square Note: $\mathrm{n}=$ number-of-rows = number-of-columns
- Matrix-vector product: $O\left(\mathrm{n}^{2}\right)$ worst-case time
\square Matrix-matrix multiplication: $O\left(n^{3}\right)$ worst-case time
\square More later with sorting and graph algorithms

