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Recitation 10. Induction

Introduction. Induction is useful in proving properties of recursive algorithms, like their execution times. It is also
the basis for understanding loops in terms of loop invariants and bound functions and understanding recursive
methods in terms of what a recursive call does based the specification of the method called instead of how the call is
executed. We present the fundamentals of mathematical induction here. Study Weiss’s chapter on induction as well!

Terminology. A natural number is a nonnegative
integer --a member of {0, 1, 2, …}. A positive integer
is an integer that is greater than 0.

For a formula e = f, the LHS is the lefthand side, e, and
the RHS is the righthand side, f.

First formulation of proof by induction. To prove a
property P(n) for all natural numbers, do this:

(1) Prove the base case: P(0)

(2) Prove the inductive case. For arbitrary positive
integer k: assume that P(0), P(1), …, P(k-1) are true and
prove P(k).

Alternative formulation. To prove a property P(n)
holds for all natural numbers, do the following:

(1) Prove the base case: P(0)

(2) Prove the inductive case. For arbitrary natural
number k: assume that P(0), P(1), …, P(k) all are true
and prove P(k+1).

Note on the first formulation. Sometimes, it helps to
have several bases cases, e.g. prove P(0), P(1), and P(2)
separately; then, for arbitrary k>2, assume P(0), P(1),
…, P(k-1) and prove P(k).

Note. If we want to prove something only about
integers {3, 4, …}, then we (1) use the base case P(3)
and (2) prove the inductive case: for arbitrary k>3,
assume P(0), …, P(k-1) and prove P(k).

Note: We have defined what is called “strong
induction”. In “weak induction”, one assumes only P(k-
1) and proves P(k) in the inductive case. However, the
two are equivalent, so there is no sense in making a big
deal about the difference between them.

Theorem. For all n>= 0, P(n) holds, where,

P(n):   +      (2i-1)      =  n2

    1<=i<=n

Proof.

Base case. For n=0, the LHS is 0 and the RHS is 0.

Inductive case: For k>=0, we assume P(0), …, P(k) and
prove P(k+1): We start with the LHS of P(k+1) and
prove it equal to (k+1) 2:

+      (2i-1)
1<=i<=k+1

=       <break off the term for i=k+1>

+      (2i-1)    + 2(k+1)-1
1<=i<=k

=       <inductive hypothesis P(k)>
k2 + 2(k+1)-1

=       <arithmetic P(k)>
 k2 + 2k+1

=       <arithmetic P(k)>
 (k+1)2

Note on the format for doing calculations. Between
each pair of successive formulas, we write “=’’
followed by an indented hint; the hint says what we
used in showing that the first formula equals the
second. Always put such hints in, because it will help
you later in reading your own proof and because it
helps anyone else who reads your proof --e.g. a grader.

Why a proof by induction works. Students often ask
how a proof by induction shows that P(n) holds for all
natural numbers n. We show why.

Suppose we have proved:

(1) The base case: P(0)

(2) The inductive case. For arbitrary positive integer k:
assume P(0), P(1), …, P(k-1) and prove P(k).

Now, give us any integer, like 99, and we can prove (if
we have the time) that P(99) is true. Here’s how.

Step 0. We know that P(0) holds

Step 1. P(0) holds. Therefore, we can use the inductive
case to prove that P(1) holds.

Step 2. P(0) and P(1) hold. Therefore, we can use the
inductive case to prove that P(2) holds.

Step 3. P(0), P(1), and P(2) hold. Therefore, we can use
the inductive case to prove that P(3) holds.

…

Step 99. P(0), P(1), P(2, …, P(98) hold. Therefore, we
can use the inductive case to prove that P(99) holds.
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A calculational format is not needed. The proof on
page 1 calculated something in the inductive case.
This example shows another style.

Suppose we have a currency that consists of 2-cent
and 5-cent coins. Prove that any amount above 3 cents
can be made using these coins.

We write P(n) as

  P(n): Some bag of 2-cent and 5-cent coins has sum n.

We prove that P(n) holds for all n>=4.

Base case n= 4. A bag that contains 2 2-cent coins and
0 5-cent coins sums to 4.

Inductive case. We prove P(k+1), for k>=4, assuming
P(k). Since P(k) holds, there is a bag of 2-cent and 5-
cent coins that sums to k. Consider two cases: the bag
contains a 5-cent coin or it does not.

Case 1: the bag contains a 5-cent coin. Take the 5-cent
coin out and put in 3 2-cent coins. The bag now sums
to k+1. Case proved.

Case 2: the bag doesn’t contain a 5-cent coin. The bag
contains only 2-cent coins. Since k>=4, the bag con-
tains at least 2 2-cent coins. Take 2 out and throw in a
5-cent coin. The bag now sums to k+1. Case proved.

Two important hints on proving by induction.

1. State the theorem. NEVER start proving some-
thing by induction without first writing down what
P(n) is and stating the theorem in the form

for all n, n>=0 , P(n) holds.

If you don’t say what P(n) is, how can you prove that
it holds? If you don’t state the range of n beforehand,
(e.g. n>=0), how can anyone know what you are
proving. Don’t EVER in this course forget this hint.

2. Exposing the inductive hypothesis. In proving the
inductive case, you have to use at least one of P(0),
P(1), …, P(k) in proving P(k+1). Therefore, when you
start with (part of) P(k+1), your goal should be to
manipulate it to expose one of the formulas P(1), …,
P(k) --i.e. to change it so that you see part of P(k) so
you can replace it. We did this in the first problem.
We changed the sum over i in the range 0..k+1 to a
sum over i in the range 0..k, because that is what the
LHS of P(k) contains.

Make your development of the proof of the inductive
case goal-oriented; strive to expose one of P(0), …,
P(k) so that you can use it.

Your understanding of recursive methods depends,
actually, on mathematical induction. To see this,
let’s take the definition of n!, for n>=0, as

n! =   *      i      (which is 1*2*…*n)
  1<=i<=n

Note:         *        i    =  1  (by definition)
  1<=i<=0

Here’s method fact:

// = n! (for n>=0)
public int fact(int n) {

if (n=0)
{  return 1; }

return fact(n-1)*n;
}

We prove that, for all n>=0,

P(n): fact(n) = n!

Base case: For n=0, fact(0) = 1, which we see by
inspection of the method body. But 1 = 0!, so the
base case holds.

Inductive case: For k>0, we assume P(k-1) and
prove P(k):

fact(k)
=     <inspect method body --this exposes P(k-1)>

fact(k-1)*k
=     <Use assumption P(k-1)>
     (k-1)!*k
=     <arithmetic, definition of n!>
     k!

Throughout the course, we have told you to
understand a recursive method in terms of the
recursive calls doing what the specification of the
method says they will do. And that’s what we did in
this more formal proof,
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Proving things about “inductive definitions”. An
inductive or recursive definition is a definition of
something in terms of itself. For example, we can
define the notation bn, for n>=0, inductively as
follows:

b0 = 1

     bn = b*bn-1   for n>0

We can prove facts about such inductive definitions
using mathematical induction. When we do this, we
generally do a case analysis using the cases given by
the inductive definition.

For example, you should prove that, for n>=0 and
m>=0,

 bm+n  = bm * bn

Caution. You can’t do this properly unless you first
put the theorem in the form “for all k, k>=0, P(k)”,
and state precisely what P(k) is.

Proofs about binary trees. We have defined binary
trees inductively, as follows:

(1) null is a binary tree, called the empty binary tree

(2) (left, v, right) is a binary tree, where
     left and right are binary trees and v is any value,

called the root value of the binary tree.

We also call (left, r, right) a node.

We deal only with finite binary trees, which means
that the number of nodes in it is finite.

Because we have defined binary trees inductively, we
can define various properties of a tree inductively:

The number of nodes in tree t, written #t, is defined
by:

#null = 0

#(l, v, r) = 1 + #l + #r

The height of a binary tree, height(t), is defined by

height(null) = 0

height (l, v, r) = 1 + max(height(l), height (r))

The level of a node n in a binary tree t is defined by:

  level(n,t) = 0 if n is the root of t

 = 1 + level(n,t.left) if n is in subtree t.left

 = 1 + level(n,t.right) if n is in subtree t.right

We can also define:

•A full binary tree is a binary tree in which each node
has 0 or 2 children.

•A complete binary tree is a binary tree in which all
leaf nodes are at level n or n-1 (for some n) and all
leaves at level n are toward the left.

• A perfect binary tree is a complete binary tree in
which all leaves are at the same level.

• A binary tree is linear if each node has at most 1
child.

The exercises show you a number of properties of
binary trees that can be proved inductively.

Exercises.

1. Prove by induction that, for n>= 0,

+     2i      =  2n - 1
0<=i<n

2. Prove by induction that, for n>= 0,

+     3i      =  (3n-1)/2
0<=i<n

3. Prove by induction that, for n>=0,
            +       i    = n*(n+1)/2
      1<=i<=n

4. Prove by induction that, for n>=3, 2*n+1 < 2n.

5. Prove by induction that, for n>=0, 4n - 1 is
divisible by 3. Hint. When trying to prove something
about 4n+1 - 1, you have to use the fact that it holds
for 4n - 1. So, start with 4n+1 - 1 and expose the
formula 4n - 1 by adding it to and subtracting it from
4n+1 - 1.

6. Prove by induction that, for n>=0, 10n - 1 is
divisible by 9. Hint. See hint on previous question.

7. Prove by induction that, for n>=0 and x != y, xn -
yn is divisible by x-y. Hint:In starting with “xn+1 -
yn+1 is divisible by x-y”, you have to expose the
inductive hypothesis “xn - yn is divisible by x-y”, To
be able to expose it, add and subtract the formula xyn

from the formula xn+1 - yn+1.

8. Prove by induction that any amount greater than
14 can be obtained using 3-cent and 8-cent coins.

9. A convex polygon is a polygon in which the line
joining any two points on its perimeter is within the
polygon. Prove by induction that, for n>=3, the sum
of the angles of a convex polygon with n sides is (n-
1)*180. Use the fact that the sum of the angles of a
triangle is 180.
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The next few questions deal with Fibonacci numbers,
which are defined by:

F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2,    for n>=2

Also, phi = (1+sqrt(5))/2, and it is known that
phi2 = phi + 1.

10. Prove that Fn < 2n,  for n<=0.

11. Prove that, for n>=1, phin-2 <= Fn <= phin-1

12. Prove that, for n>=0 and m>=1,
  Fn+m = Fm Fn+1 + Fm-1Fn

13. Prove that, for n>=0, F3n is even, F3n+1 is odd, and
F3n+2 is odd.

14. Prove that, for n>= 0, F1 + F2 + … + Fn = Fn+2 -1.

15. The definition of Fn given earlier can be
transformed mechanically into a Java method Fib for
calculating Fn. Prove by induction that the total
number of calls on Fib made to calculate Fn, for n>=
3, is Fn+2 + Fn-1 - 1. This is a huge number --to
calculate F(30) requires over 2 million calls, and
calculating F(100) takes over 2110 calls! It’s an
inefficient way to calculate F(n).

16. Below are two definitions of the reverse of a
String; in it, s is supposed to be a String and c a
character. Operation + is catenation.

revf(“”) = “”
revf(c + s) = revf(s) + c

refb(“”) = “”
revb(s+c) = c + revb(s)

Prove that, for all Strings s, revf(s) = revb(s)

17. Below is a definition of the reverse of a String.
Prove that rev(s) = rev1(s), for all Strings s, where c1
and c2 are arbitrary characters and where rev1 is
given in the previous exercise. You can make use of
the result of the previous exercise.

rev(“”) = “”
rev(c1)   = c1
rev(c1 + s + c2)  =  c2 + rev(s) + c1

18. Define m0 inductively as follows:

m0 = 0

m0+1 = 2m0 + 1, for n>=0

Prove by induction that, for n>=0, m0 = 2n -1.

Proofs about binary trees.
19. Prove by induction that the number of nodes in a
perfect binary tree of height h is 2h+1-1.

20. Prove that the number of leaves in a perfect
binary tree of height h is 2h-1.

21. Prove by induction that the number of nodes in a
linear binary tree of height h is h.

22. Prove by induction that the number of leaves in a
linear binary tree of height h is 1.

23. Prove that every nonempty complete binary tree
has an odd number of nodes.

Proofs about sets.
24. Let P(s) be the power set of set s --the set of all
subsets of s. Define #s to be the size of a set.
Prove by induction that #P(s) = 2#s. Hint. The base
case is easy. Consider a set {e} u s, where element e
is not in s. Then P({e} u s) consists of sets that
contain e and sets that do not contain e. How many
are there of each?

25. Jack claims that he is exactly one-third Spanish.
(For example, a person is 1/4 Spanish if 1 grand-
parent was Spanish and 3 were not). Prove that Jack
is lying by relating the problem to the following set
and showing that 1/3 is not in the set.

0 is in S
1 is in S
if s and y are in S, then so is (x+y)/2.


