Implementing a queue in an array
Hashing

We show aneat ideathat dlows a queue to be stored
in an array but tekes constant timefor both adding
and removing an element. We then discuss hashing.

Implementinga queuein an array

A first attempt a implementing a queue in an array
usually uses the following idea:
0 k

back

alength

QD

front

At any point, the queue cortains k elements. The
elements are stored in g 0], 1], .. a[k-1] in the order
in which they were placed inthe queue, so g[0] is at
the front.

In this situation, adding an element to the queue takes
constant time: place itin a[k] and increase k. But
deleting an element takes O(K) time The itemsin
a[1..k-1] have to bemoved downto &[0.k-2] and k
has to be decreased.

Instead l&’ s use two variables, f and b, to mark the
front and the back of the queue
0 f b

back

alength

a front

Adding anelement is done asbefore: g[b]= element;
b= b+1;

Now, removing an element tekes O(1) time: f= f+1,

But where do we put the next element when the array
looks like this?

0 f b (= alength)

QD

front back

The answer is: in a[0] --we allow wraparound!.

Thus, we can describe the general picture, the
invariant for this dass, using two pictures. The queue
is defined by:

0 f b alength
a | front back |
or
0 b f alength
a4 back | front
We also maintain:

(1) 0<=f <alength and 0 <b < alength.
(2) the queue elements are in g[f], & (f+1)%alength],

a[(f+2)%a.length], ..., a[(b-1)%a.length]
(3) the queue is empty when b= f

(4) the queueis full when (b+1)%alength = f.

To understand point (4), suppose the array hasonly
one unoccupied el ement:

0 b f
back| | front

alength

QD

If we try adding another element using
ab]= element; b= b+1,;

we end up with b=f. But b=f is supposed to describe
an empty queue, not a full queue. So we haveto let
the above picturerepresent a full queue. At least one
array element will aways beempty.

An dternative isto introduce afresh vaiable, size,
that will contain the number of elements in the queue.

A good exercise istowrite a dass QueueArray,
similar to class QueueV ector but using an array to
implement the queue, asjust described. If you do this,
be sure you give comments on the fields of the dass
that describe how the queue isimplemented in the
array!!!! Points(0)-(4) above should be given as
comments.

Hashing

Hashing is atechnique for maintaining a set of
elementsin an aray. Y ou should also read Weiss,
chapter 20, which goes into more detail (but is harder
to read).

A setisjust acdlection of distinct (different)
elements on which the following operations can be
performed:

* Make the set empty

» Add an dement to the s

» Remove an element from the set

* Get the size of the set (number of elementsin it)
* Tell whether avalue isin the set

* Tell whether the set is empty.

Obviousfirst implementation: Keep the elementsin
an array b. The elements arein b[0..n-1], where
variable n contains the size of the array. No duplicates
are allowed.

Problems: Adding anitem take time O(n) --it
shouldn’t beinserted if it is already in the set, so
b[0..n-1] has first to be searched for it. Removing an
item aso takestime O(n) in theworst case. We would
like an implementation in which the expected time for
these operations is constant: O(1).

Solution: Use hashing. We illustrate hashing
assuming that the elements of the set are Strings.

Basic idea: Rather than keep the Strings in b[0..n-1],
we allow them to be anywherein the b. We usean
array whose elements are of the following nested
class type:

/I Aninstanceisan entry in array b

private static class HashEntry {
public String element; // the element
publicboolean isinSet; // ="“dementisin set’

/I Constructor: anentry thatisin the set iff b
public HashEntry(String e, boolean b) {
element= €
islnSet= b;
}
}

Each element of our array b is either null or the name
of aHashEntry, and that entry indicates whether itis
in the set or not. So, to remove an element of the set,
just setitsisinSet field to false.

Hashing with linear probing. Here' sthebasic idea.
Suppose we want to insert the String “bc” into the set.
We compute an index k of the array, using what’s
called a hash function,

int k= hashCode(* bc");

and try to store the element at position b[k]. If that
entry isalready filled with some other element, we try
to storeit in b[(k+1)%b.length] --notethat weuse
wraparound, just as inimplementing aqueue inan
array. If that position is filled, wekeep trying
successive elements in the same way.

0 Kk
2

b.length

try toinsert element at b[k], b[k+1], etc

Each test of an array element to see whether it is the
String is called a probe.

The hash function just picks some index, depending
on its agument. We'll show a hash function later.

Checking to see whether a String “xxx” isin the setis
similar; compute k= hashCode(* xxx") and look in
successive elements of b[k..] until anull elementis
reached or until “xxx” isfound. If itisfound, itisin
the set iff the position in which it is found hasits
isinSet field true.

Y ou might think that thisis a weird way to implement
the set, that it couldn't possibly work. But it does,
provided the set doesn't fill up too much, and
provided welater make some adjustments.

Here's a basic fact:

Suppose String sisinthe set and hashCode(s) = k.
Let b[j] be thefirst nonnull elemert after b[K] (we
include wraparound here). Then sis one of the
elements b[Kk], b[k+1], ..., b[j-1] (with
wraparound).

Then, because of the basic fact, we can write method
add as follows, assuming that aray b is never full:

Hashing

/I Add sto thisset
public void add(String s) {
int k= hashCode(s);
while (b[k] '=null && !b[k].element.equals(s))
{ k= (k+1)%b.length(); }

if (b[k] !=null && b.isinSet)
return;

/I sisnot inthe set; storeitin b[k].
b[K]= new HashEntry(s, true);
Size= sizetl;

}

Removing an element is just as easy. Note that
removing a value from the setleaves it in the array.

/l Remove sfromthis set (if itisin it)
public void remove(String s) {
int k= hashCode(s);
while (b[k] '=null && !b[k].element.equals(s))
{ k= (k+1)%b.length(); }

if (b[k] == null || 'b[K].isInSet)
return;

/I sisin theset; removeit.
b[K].isInSet= falsg;
size= size-1;

}

Hashing fundions

We need a function that turns a String s into an int
that isin therange of array b. It doesn’t matter what
this function is aslong as it distributes Stringsto
integers in afairly even manner. Here is the function
that Weiss uses, assuming that s has 4 characters.

g0]*373+ g1]*372 + g 2]* 371 + g 3]*37°
i.e
((d[01*37 + q1])*37 + §2])*37 + 3]

The result is then reduced modulo thesize of array b
to produce an int in therange of b. Some of the
above calculations may overflow, but that’s okay.
The overflow produces aninteger in the range of int
that satisfies our needs.

See page 686 of Weiss for an example of this hash
function as a Java method.

What about theload factor ?
The load factor, If, isthe value of
If = (size of elements of bin use) / (size of array b)

The load factor isan estimate of how full thearray is.
If If iscloseto O, the array is relatively empty, and
hashing will be quick. If If is close to 1, then adding
and removing elements will tend to take time linear in
the size of b, which is bad. Here's what someone
proved:

Under certain independence assumptions, the
average number of array elementsexaminedin
adding an element is 1/(1-If).

So, if the array is half full, we can expect an addition
to look at 1/(1-1/2) = 2 aray elements. That' s pretty
good! If theset contains 1,000 elements and the array
sizeisover 2,000, only 2 probes are needed!

So, we will keep the array no more than half full.
Whenever insertion of an e ement will increase the
number of used elements to more than 1/2 the size of
the array, we will “rehash”. A new array will be
created and the elements that are in the set will be
copied ove to it. Of course, this takes time, but itis
worth it. Here' s the method:

/** Rehasharray b */
private void rehash() {
HashEntry[] oldb=b; // copy of array b

/I Create a new, empty array
b= new HashEntry[nextPrime(4* size())];
size= 0;

/I Copy active dementsfrom oldbto b
for (int i=0; i I=oldb.length; i= i+1)
if (oldb[i] !==null && oldb[i].isInSet)
add(oldb[i].element);
}

The size of the new array is the smallest prime
number that is at least 4*b.size(). The reason for
choosing aprime number is explained on the next

page.

Hashing

Quadratic probing.

Linear probing looksfor a String in thefollowing
entries, given tha the String hashed to k (we
implidtly assume that wraparound is being used):

b[K], b[k+1], b[k+1], b[k+1], ...
This tends to produce clustering --long sequences of
nonnull elements. Thisis becausetwo Stringsthat
hash to k and k+1 use almost the same probe
seguence.

A better idea is to probe the following entries:

b[K], (for obviousreasons,
blk + 19 thisis called
bk + 29 “quadratic probing”)

bk + 3

This has been shown to remove the “ primary
clustering” that hgppens with linear probing.
However, Strings that hash to the same value k till
use the same sequence of probes. There are waysto
eliminate this “ secondary clustering”, but we won't
go intothem here. We just want to present the basic
ideas.

Quadratic probing has been shown to be feasibleif
the sizeof array bisaprime and if the table is
always at least 1/2 empty. In thiscase, it has been
proven that:

*A new element can aways be added, and

*its probe sequence neve probes the same array

elementstwice.

Calculatingthe next element to probe

The calculation of k+i? is expensive. We show how
to makeit more efficient.

LetH =k+2 fori=0,1,2,3

For i>0, we calculate:

Hi-H,

= <déinitionof H; and H, ,
k+i*i - (k+(i-1)*(i-1))

= <arithmetic>
2i-1

Therefore, we can calaulate H, fromH, ; using the
formulaH, = H_; +2%i- 1

An implementation

The CS211 course website containsafile
HashSet.java --look under “recitations’. An instance
of class HashSet implements a set as a hash table,
using thematerial discussed in this handout. File
Mainjava containsa method main that isused to test
HashSet (at least partially).

When you look at HashSet, think of thefollowing:

* Class HashSet contains anested class, HashEntry.
This class can be static because it does not refer to
any fields or methods of class HashSet. It is nested
because there is no need for the user to know

anything about it. One such good use of nested classes
isinformation hiding, as wedo here.

* Class HashSet contains aninner class, HashSet-
Enumeration. It can’'t be anested class because it
DOES makeuse of fields of classHashSet. Thisisa
good use of inner classesfor information hiding.

*Enumerating the dements of the set does NOT
produce them in ascending order.

*We do not use the String hash function described in
this handout. Instead, we make use of afunction
hashCode that is supplied in many Java API classes.
Method hashCodeis first defined in class Object, the
superest class of them all. Method hashCodein class
String actually computes the hash code using the
equivalent of:

([0]*31 + 1])*31 + ...)*31 + gslength()-1]

