
CS211 handout Embedded systems, distributed computing, and threads 1

Table of contents

1. Introduction .1
2. Microprocessors . 1
3. Real-time simulation . 1
4. Simulating a heating system.2
5. Threads in Java . 2
6. The SystemClock . 3
7. InsideTemperature . 4

1 Introduction

We (1) introduce you to the concept of “embedded
systems”, which can consist of microprocessors that
are embedded in larger systems in order to control
or sense physical devices; (2) introduce you to “dis-
tributed programming”, where several different com-
puters are executing simultaneously, with some form
of communication and synchronization between them;
and (3) tell you about execution threads in Java, which
allow a Java program to consist of several program
segments executing in parallel.

The program that we demo can be obtained from the
course web page (look under handouts).

2 Microprocessors

Microprocessors are small computers, usually embed-
ded in other systems. They are used to monitor and
regulate the behavior of many common commercial
products. E.g. dedicated microprocessor systems in
cars regulate the fuel-air mixture for combustion and
prevent skidding (using anti-lock brake systems). In
the home, they appear in appliances such as cellular
phones, microwave ovens and thermostats for heat-
ing and cooling systems. They are used in modems,
laser printers, graphics boards, and disk drives. More
exotic applications include medical instrumentation,
guidance of “smart bombs”, detection of collision and
decay events in high energy particle accelerators.

Microprocessors appear in settings where real-time
computing is necessary: responses to external sig-
nals or changes —which can come at unpredicatable

times— must take place within a specific amount of
time. Some microprocessors must also be able to gen-
erate electrical signals that can be used to control
other devices.

The anti-lock brake system on a car is a good exam-
ple of the challenging nature of real-time computing
applications. A microprocessor must detect changes
in the rotational rates of the wheels characteristic of
a skid. If the angular velocity of the wheels increases
too fast, the tire is slipping on the pavement and the
car may be skidding; controlling the situation may
be difficult for the driver. Detecting and correcting
this situation involves monitoring the rate of change
of the angular velocity (i.e. the angular acceleration),
not just the angular velocity itself. Upon detecting
this situation, the microprocessor must generate a se-
quence of output pulses to control the hydraulic brake
system, allowing the wheels to intermittently rotate
to prevent a skid, thus making the car easier to con-
trol. Clearly, quick response1 to inputs from external
transducers is essential in this application. Not only
must the response be quick, it must be appropriate
for all imaginable driving conditions. For example, it
would unacceptable for the microprocessor to inter-
fere with normal braking operations at slow speeds.

Most real-time programming is done in assembly lan-
guage or a programming language like C (or C++)
that allows the programmer to explicitly manipulate
the contents of specific memory locations. This is be-
cause communication with a microprocessor is often
done through fixed memory locations. The real-time
microprocessor itself is often programmed in its na-
tive assembly language. The machine instructions are
placed in the microprocessors memory, which is phys-
ically distinct from the memory system of the host
computer, so that the instructions can be executed
autonomously by the real-time processor system.

3 Real-time simulation

A real-time application may consist of a host com-
puter that communicates with several microproces-
sors, each of which senses some physical property (like
the temperature in a room, or the speed at which

1On the order of tens of milliseconds.

CS211 handout Embedded systems, distributed computing, and threads 2

a wheel is spinning) or controls some device. The
host and an individual microprocessor communicate
through a “register”: a location in the microproces-
sor’s memory. This location is “mapped” onto a fixed
location in the host processor’s memory, so that when
the host references that memory location, it is really
referencing the microprocessor’s register. This is why
many real-time applications need to read and write
specific memory locations.

The microprocessor usually has a “program status
word”, or psw, whose bits are used to indicate the
status of the microprocessor. For example, one of the
bits, say C, might be used as follows: When the host
computer is ready to read a value from the micro-
processor’s register, it (0) sets bit C to 1, (1) waits
until C is set to 0 (by the microprocessor, to indicate
that a new value is in its register), and then reads
the register. This is how the host computer and the
microprocessor communicate and synchronize.

Because of its built-in security measures, Java lacks
the ability to manipulate the contents of specific mem-
ory addresses explicitly, so it is not well suited to real-
time programming. However, Java does provide the
tools needed to simulate a real-time computing envi-
ronment. Our real-time simulation of a home heating
system is an example. In it, we simulate this aspect
of communication using a method readValue().

4 Simulating a heating system

Besides a system output window, our heating-system
simulation has five small windows, each of which rep-
resents one component of the home heating system:

1. A clock. You can see the clock “ticking” away.
The period 5000 means that the clock ticks ev-
ery 5,000 milliseconds, or every 5 seconds. You
can change this to a smaller or larger number of
milliseconds by clicking in that text field, typ-
ing a new number, and pressing button Read
period. (Minimum period is 100 milliseconds.)

2. The outside temperature is initially 32 de-
grees, since this is Ithaca. Typically, a micro-
processor would be attached to a sensor that
would detect the outside temperature. In our

simulation, the user changes the outside tem-
perature by typing a new integer and pressing
button Read temperature.

3. The furnace is switched on or off by the pro-
gram as needed. This window just displays its
status. There is a button for turning output on
or off. Press it; thereafter, at each clock tick,
a single line of output is printed in the system
output window, telling you the status of the fur-
nace, the change in the inside temperature due
to the furnace being on, the change due to the
difference in the temperature inside and out-
side, the total change for this tick, and finally
the new inside temperature.

4. The desired temperature is set initially at
68, rather than 72, to save energy. Change the
desired temperature, as you change the outside
temperature. Go ahead; raise it if you’re cold.

5. The inside temperature is initially 60 be-
cause the thermostat was at 55 for the night and
we just woke up and changed it to 68. Don’t
worry, it will warm up soon. The inside temper-
ature is simulated by the program; how much it
changes at each clock tick depends on whether
the furnace is on and the difference between the
inside and outside temperatures.

Experimenting with this home-heating simulation. Be-
come familiar with the five components on the screen.

5 Threads in Java

Typically, several programs may be executing on a
computer at one time. Suppose your laptop is con-
nected to a printer and a modem. One program on
your computer could be printing something, another
one could be faxing a file, a third could be comput-
ing something in the background, and a fourth could
be some game that you are playing. Thus, (at least)
four programs are executing at the same time on your
laptop. Each is called an execution thread.

There is only one CPU (central processing unit) on
your computer, so the four programs can’t execute
simultaneously. Instead, your computer allocates a

CS211 handout Embedded systems, distributed computing, and threads 3

bit of execution time to each thread. Your operating
system uses a priority scheme to decide which thread
should execute next and how much time it should get.
This switching is so fast and frequent that it gives the
illusion of simultaneous execution.

These threads (of execution) can be independent (e.g.
the printer program and your game don’t interact),
in which case allocation is fairly easy.

Sometimes, threads have to communicate with each
other and synchronize in some fashion. For example,
one thread may maintain windows on the screen, so
when your Java program —which has at least one
thread of execution— draws something in a window,
it communicates with the thread that maintains the
window.

In Java, synchronization is provided using three fea-
tures. Suppose c is a class instance that is a thread.
Then, execution of c.wait() in another thread b
(say) tells the system to stop executing thread b un-
til thread c executes a statement notifyAll. In other
words, execution of c.notifyAll tells all threads that
are waiting on c that they can now continue.

There is also a “synchronize” property, which can be
attached to methods or to individual statements; it
says that all other processes must be deterred from
executing code in this class until this method or state-
ment has finished –other processes are locked out.

A thread is an instance of class Thread. Here are
some of the methods of class Thread that you can
use:

• public void run(). When a thread is created
by implementing interface Runnable, which we
do, this method is called to start the thread
executing.

• public static Thread currentThread().
This returns the thread that is currently exe-
cuting.

• public void start(). Call this to start exe-
cuting the thread –this method, which should
not be overridden, calls method run.

• public static void sleep(long millis).
Make this thread sleep for millis milliseconds.

• public void interrupt(). Interrupt this thread,
so that another thread can execute.

• public final boolean isAlive(). = “this
thread is alive –has not died”.

There are two ways to create a Thread. The first,
which we don’t use, is to use a constructor of class
Thread. The other way is to implement interface
Runnable, which requires the class to have a method
run(), which is called by the system to execute the
thread whenever your program calls method start().
This is the method we use in the home-heating sim-
ulation.

Here’s a comment from interface runnable: In addi-
tion, Runnable provides the means for a class to be
active while not subclassing Thread. A class that
implements Runnable can run without subclassing
Thread by instantiating a Thread instance and pass-
ing itself in as the target. In most cases, the Runnable
interface should be used if you are only planning to
override method run() and no other Thread meth-
ods. This is important because classes should not be
subclassed unless the programmer intends on modi-
fying or enhancing the fundamental behavior of the
class.

In our Java simulation, we have six programs —or six
threads of execution— executing simultaneously.

6 The SystemClock

File SystemClock.java simulates a clock. At the end
of the line public class SystemClock... appears
the phrase implements Runnable. Interface Runnable
defines one method, run(), which is called to execute
a class instance as a thread. We’ll look at run later.

So, each instance of this class is a thread of execution.

The class has two variables that deal with the clock
itself: counter contains the number of clock ticks
that have happened thus far; period is the number
of milliseconds to wait between clock ticks.

Four fields are components that go in the Frame,
which you see on the screen: two Labels, a Textfield,
and a Button.

CS211 handout Embedded systems, distributed computing, and threads 4

Look at the constructors for SystemClock (includ-
ing method initialize). We use the default lay-
out manager for Frames, BorderLayout. This layout
manager allows us to place components in five places:
North, West, Center, East, and South:

North
West Center East

South

In method initialize, the four calls on method add
place the four components in the Frame.

Two methods in SystemClock are fairly obvious: re-
set sets the clock back to zero, and ticks is used by
other processors to get the clock’s value.

Method run is of special significance. The main pro-
gram (method main of Thermostat), calls cThread-
.start(), where cThread is the variable that con-
tains the instance of SystemClock. In turn, method
start will call run to start execution of this thread.

Method run is basically a loop in which each iteration
does the following:

• Make the thread sleep for period milliseconds.
Then wake up.

• Notify all the other threads that may be waiting
on this one (for example, to read the tick) that
the thread is now awake.

• Increase the time counter (and display it prop-
erly in the Frame).

The code to notify the other processes should be per-
formed only when no other process is referencing vari-
ables associated with this thread. This “lock out” is
indicated by the phrase synchronize. We don’t go
into any more detail here on this notion of synchro-
nization.

Finally, take a look at method action, which is called
when a button is pressed. There is only one button in
the Frame, so there is no need for code to determine
what the action was. The pressing of the button is
processed by (0) reading TextField periodField,
(1) trimming whitespace from both ends of it, (2)
converting this String value to an integer, and (3)
finally storing the integer in period (if the value is
at least 100).

7 InsideTemperature

We discuss just two other classes in this project, be-
cause the others are similar.

First, an instance of class ClockedFrame is a thread
of execution that synchronizes with the clock. Thus,
within this class, you see a method run, which is
a loop that at each iteration synchronizes with the
clock. That is all.

Also, this class is a Frame on the monitor screen. This
class is a superclass of InsideTemperature as well as
of several other classes, so an instance of InsideTem-
perature is an executable thread.

Now turn to subclass InsideTemperature. Besides
some components for the Frame (two labels), there is
only one variable, temperature, which contains the
current inside temperature in the simulation. The
constructor just constructs the Frame, shows it, and
returns; there is nothing special about it.

Methods getValue and setValue can be called to
reference and set the inside temperature.

