
1

1

Executing Method Calls

This lecture tells you precisely how method
calls are executed (a few details will have to
wait until we get to classes and objects). The
rules we give work automatically for recursive
methods.

YOU MUST MEMORIZE THE RULES FOR
EXECUTING A METHOD CALL AND BE
ABLE TO EXECUTE A METHOD CALL
YOURSELF.

Readings:
Weiss, Section 7.3.3, page 241-242, discusses
this topic briefly but doesn’t say enough.

2

Frame for a call
(also called “activation record”)

public static void p(int p1, int p2) {
 int x;
 x= p1;
 ...
}

procedure call: L1: p (2+5, 9-1);

local vars

parameters

method name scope box

 return
 address

frame for call

x _______

p2_______

p1_______

 p (explain later)

after L1

2

3

Frame for a call

public static void p(int p1, int p2) {
 int x;
 x= p1;
 ...
}

procedure call: L1: p (2+5, 9-1);

When method body is being executed, look in
frame for local variables and parameters.

local vars

parameters

frame for call

x _______

p2_______

p1_______

 p (explain later)

after L1

4

Frames are placed on the call stack
and removed when call is finished

public static void p(int p1, int p2) {
 int x= 5;
 L2: proc(x, p1+p2);
 ...
}

public static void main (String[] pars) {
 L1: p (2+5, 9-1);
}

main

 p

proc

call stack

stack: a list with two
operations:
(1) push an element
 onto it;
(2) pop an element
 off it.

3

5

Execution of procedure call
L1: p (2+5, 9-1);

1. Evaluate the arguments and push them onto
the call stack.
2. Push locations for the rest of the frame for
the call onto the stack.
3. Put in frame: name of method, local
variables, return address, and scope box (note
that the arguments have already been assigned
to the parameters).
4. Execute method body --look in frame at top
of stack for all variables.
5. Pop the frame from the stack; continue exe-
cuting at the return address in popped frame.

main

call stack

6

Execution of procedure call

1. Evaluate the arguments and push them onto
the call stack.
2. Push locations for the rest of the frame for
the call onto the call stack.
3. Put in frame: method name, local variables,
return address, and scope box (arguments have
already been assigned to parameters).
4. Execute method body --look in frame at top
of stack for all variables.
5. Pop the frame from the stack; continue exe-
cuting at the return address in popped frame.

Five-minute quiz on Tuesday, 11 Sept.
 You will have to write this sequence of
instructions and follow it in executing a

method call.
Everyone should get 100 on the quiz!

Memorize this sequence of instructions!!
Practice executing the sequence yourself!!!

4

7

Executing some procedure calls

public class Example {
 public static void main (String[] pars) {

L1: print(2);
 }

 // Print integers 0..n in reverse order
 // Precondition: 0 <= n
 public static int print(int n) {
 if (n == 0) {

 System.out.println(n);
 return;

 }
 // {n > 0}
 System.out.println(n);
 L2: print(n-1);
 }
}

We’ll execute this program on the blackboard

8

Snapshot of call stack just before
executing method body of print

for the second time

x _______

pars_ ?___

 main (explain later)

 in system

n _ 2___

 print (explain later)

 after L1

n _ 1___

 print (explain later)

 after L2

5

9

Evaluation of a function call max(5,3)

Consider executing

int b= max(3,5) + max(4,6);

Two points:

(0) A call like max(3,5) yields a value, which is
used in place of the call. We have to change our
execution rules to take this into account.

(1) This statement has TWO calls in it, so we
have to revise our notion of a “return address”.
It’s not always the next statement. We won’t
deal with this in detail but will just assume we
understand how to do it.

10

Evaluation of a function call max(5,3)

1. Evaluate the arguments and push them onto
the call stack.
2. Push locations for the rest of the frame for
the call onto the stack.
3. Put in frame: name of method, local
variables, return address, and scope box (note
that the arguments have already been assigned
to the parameters).
4. Execute method body --look in frame at top
of stack for all variables, until a statement
return e; is to be executed.
5. Evaluate e; replace the frame on the top of
the stack by the value of e; continue executing
at the return address in popped frame.

(the value at the top of the stack will be used
as the value of the function call and will be

popped from stack when used)

6

11

Execute Some Calls

public class Example {
 // Test method fact
 public static void main (String[] pars) {

L1: int x= fact(2);
 }

 // = !n (for n >= 0)
 public static int fact(int n) {
 if (n == 0) {

return 1;
 }
 // {n > 0}
 return n * /* L2: */ fact(n-1);
 }

}

We’ll execute this program on the blackboard.

12

Snapshot of call stack
just before executing

the body of fact for the third time

x _______

pars_ ?___

 main (explain later)

 in system

n _ 2___

 fact (explain later)

 after L1

n _ 1___

 fact (explain later)

 after L2

n _ 0___

 fact (explain later)

 after L2

7

13

Snapshot of call stack
just after

the call fact(n-1) with n = 1
 is finished

x _______

pars_ ?___

 main (explain later)

 in system

n _ 2___

 fact (explain later)

 after L1

n _ 1___

 fact (explain later)

 after L2

 1

14

Snapshot of call stack
just after evaluation of
n * fact(n-1) with n = 1

 is finished

x _______

pars_ ?___

 main (explain later)

 in system

n _ 2___

 fact (explain later)

 after L1

n _ 1___

 fact (explain later)

 after L2

