Recursion

We teach recursion as the first topic, instead of new object-oriented ideas, so that those who are new to Java can have a chance to catch up on the object-oriented ideas from CS100.

Recursive definition: A definition that is defined in terms of itself.

Recursive method: a method that calls itself (directly or indirectly).

Recursion is often a good alternative to iteration (loops). Its an important programming tool. Functional languages have no loops -only recursion.

Readings:

Weiss, Chapter 7, page 231-249
CS211 power point slides for recursion
Homework: See handout.

Recursion

Recursive definition: A definition that is defined in terms of itself.

A noun phrase is either

- a noun, o
- an adjective followed by a noun phrase
<noun phrase> ::= <noun>
| <adjective> <noun phrase>

Recursive definitions in mathematics

Factorial:

$\begin{array}{ll}!0=1 & \\ !\mathrm{n}=\mathrm{n} *!(\mathrm{n}-1) & \text { for } \mathrm{n}>0\end{array} \quad \begin{aligned} & \text { base case } \\ & \text { recursive case }\end{aligned}$

Thus, $!3=3 *!2$

$$
\begin{aligned}
& =3 * 2 *!1 \\
& =3 * 2 * 1 *!0
\end{aligned}
$$

$$
=3 * 2 * 1 * 1 \quad(=6)
$$

Fibonacci sequence:

$\mathrm{Fib}_{0}=0$	base case
$\mathrm{Fib}_{1}=1$	base case
$\mathrm{Fib}_{\mathrm{n}}=\mathrm{Fib}_{\mathrm{n}-1}+\mathrm{Fib}_{\mathrm{n}-2}$ for $\mathrm{n}>1$	recursive case
$0,1,1,2,3,5,8,13,21,34,55, \ldots$	

Turn recursive definition into recursive function

$$
\begin{aligned}
& \text { Factorial: } \\
& !0=1 \quad \text { base case } \\
& !\mathrm{n}=\mathrm{n} *!(\mathrm{n}-1) \text { for } \mathrm{n}>0 \quad \text { recursive case } \\
& \text { Thus, }!3=3 *!2 \\
& =3 * 2 *!1 \\
& =3 * 2 * 1 *!0 \\
& =3 * 2 * 1 * 1 \quad(=6)
\end{aligned}
$$

Turn recursive definition into recursive function
Fibonacci sequence:

$\mathrm{Fib}_{0}=0$	base case
$\mathrm{Fib}_{1}=1$	base case
$\mathrm{Fib}_{\mathrm{n}}=\mathrm{Fib}_{\mathrm{n}-1}+\mathrm{Fib}_{\mathrm{n}-2}$	for $\mathrm{n}>1$
recursive case	

note the precise specification
// = Fibonacci number n (for $\mathrm{n}>=0$)
public static int Fib(int n) \{
if $(\mathrm{n}<=1)$ \{ can handle both
return n ; base cases together
\}
$/ /\{\mathrm{n}>0\} \quad$ an assertion
return $\operatorname{Fib}(\mathrm{n}-1)+\operatorname{Fib}(\mathrm{n}-2)$; recursive case
\}
(two recursive calls)

Later, we explain why this works. ${ }^{5}$

Two issues in coming to grips with recursion

1. How are recursive calls executed?
2. How do we understand a recursive method and how do we write-create a recursive method?

We will handle both issues carefully. But for proper use of recursion they must be kept separate.

We DON'T try to understand a recursive method by executing its recursive calls!

Understanding a recursive method

MEMORIZE THE FOLLOWING
Step 0: HAVE A PRECISE SPECIFICATION.

Step 1: Check correctness of the base case.

Step 2: Check that recursive-call arguments are in some way smaller than the parameters, so that recursive calls make progress toward termination (the base case).

Step 3: Check correctness of the recursive case. When analyzing recursive calls, use the specification of the method to understand them.

Weiss doesn't have step 0 and adds point 4 , which has nothing to do with "understanding"

4: Don't duplicate work by solving some instance in two places.

Understanding a recursive method

$$
\begin{aligned}
& \text { Factorial: } \\
& !0=1 \\
& \text { base case } \\
& \text { ! } \mathrm{n}=\mathrm{n} * \text { !(} \mathrm{n}-1 \text {) for } \mathrm{n}>0 \text { recursive case }
\end{aligned}
$$

Step 1: HAVE A PRECISE SPECIFICATION

Step 2: Check the base case.
Here's when $\mathrm{n}=0,1$ is returned, which is 0 !. So the base case is handled correctly.

Understanding a recursive method

 Factorial:$!0=1 \quad$ base case
! $\mathrm{n}=\mathrm{n} *!(\mathrm{n}-1)$ for $\mathrm{n}>0$ recursive case
Step 3: Recursive calls make progress toward termination.

> argument $n-1$ is smaller than parameter n, so there is progress toward reaching base case 0
$/ /=$! $n \quad($ for $n>=0)$
public static int fact(int $n)\{$
if $(\mathrm{n}==0)$ \{
return 1 ;
\}
$/ /\{n>0\}$
return $\mathrm{n} * \operatorname{fact}(\mathrm{n}-1)$;
recursive case
\}

Understanding a recursive method

$$
\begin{aligned}
& \text { Factorial: } \\
& 0=1 \quad \text { base case } \\
& !\mathrm{n}=\mathrm{n} *!(\mathrm{n}-1) \text { for } \mathrm{n}>0 \text { recursive case }
\end{aligned}
$$

Step 4: Check correctness of recursive case; use the method specification to understand recursive calls.

In the recursive case, the value returned is $\mathbf{n} * \boldsymbol{f a c t}(\mathrm{n}-1)$.

Using the specification for method fact, we see this is equivalent to n*!(n-1).
That's the definition of \mathbf{n}, so the recursive case is correct.
$/ /=$!n (for $\mathrm{n}>=0)$
public static int fact(int $n)\{$
if $(\mathrm{n}==0)$ \{
\{ return 1; \}
return n * fact($\mathrm{n}-1$); recursive case
\}

Creating recursive methods

Use the same steps that were involved in understanding a recursive method.
-Be sure you SPECIFY THE METHOD PRECISELY.
-Handle the base case first
-In dealing with the non-base cases, think about how you can express the task in terms of a similar but smaller task.

Creating a recursive method

Task: Write a method that removes blanks from a String.
0. Specification: precise specification!
$/ /=\mathrm{s}$ but with its blanks removed public static String deblank(String s)

1. Base case: the smallest String is "".
if (s.length $=0$)
return s ;
2. Other cases: String s has at least 1 character. If it's blank, return s[1..] but with its blanks removed. If it's not blank, return
$s[0]+(s[1 .$.$] but with its blanks removed)$
Notation: $\mathrm{s}[\mathrm{i}]$ is shorthand for s.charAt $[\mathrm{i}]$. $s[i .$.$] is shorthand for s.substring(i).$

Creating a recursive method

$/ /=\mathrm{s}$ but with its blanks removed public static String deblank(String s) \{
if (s.length $==0$) return s;
$/ /\{\mathrm{s}$ is not empty $\}$
if ($s[0]$ is a blank)
return $\mathrm{s}[1 .$.$] with its blanks removed$
$/ /\{\mathrm{s}$ is not empty and $\mathrm{s}[0]$ is not a blank $\}$
return $s[0]+(s[1 .$.$] with its blanks removed);$ \}

The tasks given by the two English, blue expressions are similar to the task fulfilled by this function, but on a smaller String! !!!Rewrite each as
deblank(s[1..]) .
Notation: $\mathrm{s}[\mathrm{i}]$ is shorthand for s.charAt $[\mathrm{i}]$. $\mathrm{s}[\mathrm{i} .$.$] is shorthand for \mathrm{s}$. substring(i).

Creating a recursive method

$/ /=\mathrm{s}$ but with its blanks removed
public static String deblank(String s) \{
if (s.length $==0$)
return s ;
// $\{\mathrm{s}$ is not empty $\}$
if (s.charAt(0) is a blank)
return deblank(s.substring(1));
$/ /\{\mathrm{s}$ is not empty and $\mathrm{s}[0]$ is not a blank $\}$
return s.charAt(0) +
deblank(s.substring(1));
\}

Check the four points:

0. Precise specification?
1. Base case: correct?
2. Recursive case: progress toward termination?
3. Recursive case: correct?

Creating a recursive method

Task: Write a method that tests whether a String is a palindrome (reads the same backwards and forward).
E.g. palindromes: noon, eve, ee, o, ""
nonpalindromes: adam, no

1. Base case: the smallest String is "". A string consisting of 0 or 1 letters is a palindrome.
if (s.length() <= 1)
return true;
$/ /\{\mathrm{s}$ has at least two characters $\}$

Creating a recursive method

$/ /=$ "s is a palindrome"
public static boolean isPal(String s) \{
if (s.length() <=1)
return true;
// \{ s has at least two characters \}
We treat the case that s has at least two letters. How can we find a smaller but similar problem (within s)?
s is a palindrome if
(0) its first and last characters are equal, and
(1) chars between first \& last form a palindrome:
have to be the same
e.g. AMANAPLANACANALPANAMA
has to be a palindrome
the task to decide whether the characters between the last and first form a palindrome is a smaller, similar problem!!

Creating a recursive method

// = "s is a palindrome"
public static boolean isPal(String s) \{
if (s.length() $<=1$)
return true;
// \{ s has at least two characters \}
We treat the case that s has at least two letters. How can we find a smaller but similar problem (within s)?
s is a palindrome if
(0) its first and last characters are equal, and
(1) chars between first \& last form a palindrome:
have to be the same
e.g. AMANAPLANACANALPANAMA
has to be a palindrome
the task to decide whether the characters between the last and first form a palindrome is a smaller, similar problem!!

Binary search

Consider int array $\mathrm{b}[0 . . \mathrm{n}-1]$ and integer x . Assume that virtual element $\mathrm{b}[-1]$ contains virtual element $\mathrm{b}[\mathrm{n}]$ contains

$$
\mathrm{b}=\begin{array}{llllllllll}
\mathbf{- 1} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
- & 3 & 5 & 7 & 7 & 7 & 9 & 9 & & \mathrm{n}=7
\end{array}
$$

Find an index i such that
$\mathrm{b}[\mathrm{i}]<=\mathrm{x}<=\mathrm{b}[\mathrm{i}+1]$
If $x=7$, finds position of rightmost 7 .
If $x=2$, return 0 .
If $x=-5$, return 0
If $x=15$, return 9
$/ /=$ index i such $\mathrm{b}[\mathrm{i}]<=\mathrm{x}<=\mathrm{b}[\mathrm{i}+1]$
// precondition $\mathrm{b}[\mathrm{h}]<=\mathrm{x}<=\mathrm{b}[\mathrm{k}]$ and
// $-1<=\mathrm{h}<\mathrm{k}<=$ b.length
public static int bsearch(int[] b, int h, int k)

Search whole array using
bsearch(b, 0, b.length)

Binary search

Consider int array $\mathrm{b}[0 . . \mathrm{n}-1]$ and integer x . Assume that
virtual element $\mathrm{b}[-1]$ contains -
virtual element $\mathrm{b}[\mathrm{n}]$ contains
$\begin{array}{lllllllll}\mathbf{- 1} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
$\mathrm{b}=\begin{array}{llllllllll}- & 3 & 5 & 7 & 7 & 7 & 9 & 9 & \mathrm{n}=7\end{array}$
$/ /=$ index i such $\mathrm{b}[\mathrm{i}]<=\mathrm{x}<=\mathrm{b}[\mathrm{i}+1]$
// precondition $\mathrm{b}[\mathrm{h}]<=\mathrm{x}<=\mathrm{b}[\mathrm{k}]$ and
// $\quad-1<=\mathrm{h}<\mathrm{k}<=$ b.length
public static int bsearch(int[] b, int h, int k) \{ int $\mathrm{e}=(\mathrm{h}+\mathrm{k}) \% 2$.
// $\{-1<=\mathrm{h}<\mathrm{e}<\mathrm{k}<=\mathrm{b}$.length $\}$
if (b[e] <= x)
\{ i=e; \}
else $\{j=e ;\}$
\}

Tiling Elaine's Kitchen

$2^{* *} n$ by $2^{* *} n$ kitchen, for some $n>=0$.
A 1 by 1 refrigerator sits on one of the squares of the
kitchen. Tile the kitchen with L-shaped tiles:, each a 2 by 2 tile with one corner removed:

Base case: $\mathrm{n}=0$, so it's a $2^{* *} 0$ by $2^{* *} 0$ kitchen
Nothing to do!
Recursive case: $\mathrm{n}>0$. How can you find the same kind of problem, but smaller, in the big one?

