
1

1

Review of classes and subclasses

M fast through this material, since by now all
have seen it in CS100 or the Java bootcamp

First packages
Then classes
Then subclasses

Goal: to give you complete understanding
about how objects, methods, method calls are
implement.

Raise discussion of classes and subclasses
above the level of the computer and talk
instead about classes as drawers in a filing
cabinet, objects as manila folders that go in
file drawers, and references or pointers as
labels or names placed on manila folders.

This makes concepts easier to grasp, to talk
about; loses nothing.

2

Packages

Read Weiss, section 3.6, “packages”, for
reference

Package: collection of .java source files (and
other packages and interfaces) that are grouped
together in the same directory (folder).

Package java.lang contains classes that you
can automatically use:

•wrapper classes: Integer, Boolean, etc.
•Math: contains functions you can use, like abs
and sqrt
•String and StringBuffer
•System
•Throwable, Error, Exception (discuss later)

2

3

Package java.io contains classes for doing
input/ouput. We’ll discuss this a bit in
recitations.

To use these, you should “import” them.

Put the command

import java.io.*;

at the top of a file that contains a class that will
use a class in this package.

import java.io.*;
public class Ex {

public void m(…) {
 ...
}

}

4

Other useful packages

You have to import these packages. We’ll use
many of these later in the course.

• java.applet: used for applets

• java.awt: used in constructing GUIs

• javax.swing: the more modern classes for
constructing GUIs

• java.util: classes for dates, calendars,
locales, random numbers. Class Vector.
Classes for sets, lists, maps

3

5

You can make your own packages

Default package, say classes C1, C2, C3

Package mine, say classes K1, K2

File structure:

 main directory:
 C1.java
 C2.java
 C3.java
 mypack (a directory)

K1.java
K2.java

package mypack;

public class K2 {

}

package mypack;

public class K1 {

}

file K1.java file K2.java

6

Visibility levels

public int w;
private int x;
protected int y;
/* package */ int z;

private: visible only in the class.
/* package */: visible only in the package in

which it appears.
protected: visible in the package in which it

appears and in subclasses.
public: visible anywhere.

Note: You cannot use the keyword package as
a prefix on a declaration. That is why we
have placed comments around it. Visibility
“package” is the default, when no access
modifier is given.

Note: You can place these modifiers on fields,
methods, and classes

4

7

Review of classes

Why review? To make sure that you and I are
using the same terminology and the same
concepts of class and related issues. Use this
example:

public class C {
 public static final int ten= 10;

private int y;

// Constructor: instance with y = yp
public C (int yp) { y= yp; }

// specification of method p
public static void p(int x) {

// body of method goes here
}

// specification of function f
public int f(int y) {

// body of function f goes here
}

}

8

Notes on the class on previous slide

1. A class is a drawer of a file
cabinet. It contains (at least) the
static entities defined in the class.
In this case, ten and p.

2. A class is a template for objects
of the class. Every object of C is
a manila folder of the form given
below. The manila folder contains all nonstatic
entities declared in class C. The manila folder
goes in C’s file drawer.

Class C

a0
C

y

f C

name of object
name of class

nonstatic field,
or instance
variable

nonstatic
method, or
instance method constructor

5

9

Draw objects as manila folders

You MUST draw each object as shown below

As a manila folder with:

• class name in box in upper right corner

• name of object on the tab of manila folder

• each nonstatic field as a variable in the folder

• the name of each nonstatic method in the folder

a0
C

y

f C

10

The frame for a method call

All method calls occur within methods, which
are defined in classes. We now explain the use of
the “scope box” in the frame:

Scope box used during execution of method body
to find variables and methods that are referenced

Scope box contains, for a:

• nonstatic method: the name of the instance in
which the method appears
• static method: the name of the class in which it
is defined
• constructor: name of newly created object

parameters and local
variables appear here

method name

scope box

return
address

6

11

parameters and local
variables appear here

method name

scope box

return
address

Execution of procedure call

1. Evaluate args and push them onto call stack.

2. Push locations for the rest of the frame for
the call onto the stack.

3. Put in frame: name of method, local vars,
return address, and scope box --filled in
correctly (see slide 10).

4. Execute method body --look in frame at top
of stack for variable or method. If not there, use
scope box to determine where to look next; if
in an object, search from bottom to top.

5. Pop frame from call stack; continue execut-
ing at the return address in popped frame.

12

Sample execution of proc call --do in class

public class M {
public static void main (String[] pars) {

b= new C(5);
c= new C(4);
d= c.hits();

}
}

// An instance maintains the number of walks
// and hits of a baseball player
public class C {

private int y; // number of walks
private int x= 0; // number of hits

// Constructor: instance with yp walks, 2 hits
public C (int yp) { y= yp; x= 2; }

// = number of hits
public int hits() { return x; }

 // = number of hits + number of errors
public int hitErr() { return x;}

}

7

13

Memorize for quiz on Tuesday, 18 Sept.

It’s important for understanding how method
calls and objects work that you memorize:

(1) format of a frame

(2) format of an object --manila folder

(3) evaluation of a new expression
new C(…)

(a) create a new instance of class C
(b) execute method call C(…), putting in

the scope box of the frame the name of
the newly created object

(4) Steps in executing a method call (slide 11).

14

Drawing an instance of a subclass

// Extends class C on slide 12
public class Sub extends C {

private int z; // number of errors

// Constructor: instance with yp walks, 2 hits,
// and zp errors
public Sub(int yp, int zp)

{ super(yp); z= zp; }

// = number of hits + number of errors
public int hitErr() { return hits() + z;}

}
a5

C
 y x

C hits hitErr

Subz

Sub hitErr

superclass
name

superclass
components

subclass
name

subclass
components

8

15

a5
C

 y 5 x 2

C hits hitErr

Subz 6

Sub hitErr

Overriding a method

Consider: Sub b= new Sub(5,6);
b.hitErr();

Which method hitErr is called? Our rules for
execution of calls (slide 11) say the one below
the line --the one in subclass Sub. It overrides the
other. In class, we execute this call.

b a5

16

a5
C

 y 5 x 2

C hits hitErr

Subz 6

Sub hitErr

Casting

Consider: C c= new Sub(5,6);

Instance a5 automatically cast to C, since c is of
class-type C. Apparent type of a5 (using c) is C,
real type is Sub.

 Legal Illegal
 c.y c.z
 c.x
 c.hits()
 c.hitErr()

c a5

Using c,
reference
only names
accessible
in the class
of C

But our
rules say
that
c.hitErr()
refers to
this!!!

9

17

a5
C

 y 5 x 2

C hits hitErr

Subz 6

Sub hitErr

Casting

Consider: C c= new Sub(5,6);
Sub s= (Sub) c;

Explicit cast of c to subclass s. Using s, one can
reference everything in object a5.

 Legal Illegal Legal
 c.y c.z s.z
 c.x s.hits()
 c.hits() s.hitErr()
 c.hitErr()

c a5 s a5

