
1

1

Inner classes

Reading for these lectures:
Weiss, Section 15.1 (Iterators and nested classes),
Section 15.2 (Iterators and inner classes).

A nested class is a static class that is defined inside
another class. A nested class gets its own file drawer.
A nested class can reference only static (and not non-
static) variables of the class in which it is nested.

public class X {
public static final int Y= 2;
private int x;
private static class SC {

private int p;
private static int q;

 public void m()
 { p= Y; q= p; }
}

}

Reasons for using nested class. Get it out of the way
(e.g. a once-used functor), perhaps make it private so
others can’t refer to it directly.

In method m,
can reference,
p, q, Y,
but not x.

A class that is
not defined
inside another
can’t be static

2

Inner classes

An inner class is a non-static class that is defined inside
another class. We investigate such classes here.

Start by defining a class that allows arrays of any size,
like util.Vector (but simpler, to show the idea).

// An array that changes to fit the required size
public class DynamicArray {

 // Constructor: an array with 10 elements allocated
 public DynamicArray() {…}

 // = the number of elements in use
 public int length() {..}

 // = the element at index i (given 0 <= i < length())
 public Object get(int i) {...}

 // set the element at position i to v (0 <= i)
 public void set(int i, Object v) {…}
}

2

3

Class DynamicArray

// An array that changes to fit the required size
public class DynamicArray{
 // b[0..n-1] are the elements. If n!=0, b[n-1] is the
 // element with highest index into which a value
 // was stored.
 private Object[] b;
 private int n;

// Constructor: an array with 10 elements allocated
 public DynamicArray() {
 b= new Object[10];
 n= 0;
 }

 // = the number of elements in use
 public int length() {
 return n;
 }

 // = the element at index i.
// Precondition: 0 <= i < length()

 public Object get(int i) {
 return b[i];
 }

4

Class DynamicArray (continued)

 // set the element at position i to v (0 <= i)
 public void set(int i, Object v) {
 if (i >= b.length) {
 // Create a new array newb with at least i+1

// elements. For efficiency, at least double the
// array size

 Object[] newb=
new Object[Math.max(i+1, 2*b.length)];

 // Copy b[0..length()] into newb
 for (int j= 0; j != length(); j++)
 { newb[j]= b[j]; }

 b= newb;
 }

 // {i < b.length, so v can be stored in b[i]}
 b[i]= v;

n= Math.max(n, i+1);
 }

}

3

5

An iterator over a DynamicArray

import java.util.*;

public class DAIterator implements Iterator {
 private DynamicArray b; // The array to process
 private int k= 0; // Next element to process.

// 0 <= k <= b.length()

 // Constructor: an iterator over b
 public DAIterator(DynamicArray b) { this.b= b; }

 // = “there is another item to process”
public boolean hasNext() { return k < b.length(); }

 // = the next item to process. Call only once per item
// Throw an exception if no more items exist
public Object next() {
 if (k == b.length())
 throw new IllegalStateException(" ... ");
 k= k+1;
 return b.get(k-1);
}

 // Not supported; does nothing
public void remove() {}

}

6

Problem with this iterator
over DynamicArray

• Class DynamicArray and its iterator are separate, in
two distinct files. Perhaps double what we need, and this
makes a difference when there are hundreds of classes
to maintain.

• Users don’t have to be able to see the iterator, they just
have obtain a new instance when it is needed.

Making the iterator an inner class is a better solution.
An inner class is a non-static class that is defined inside
another class.

4

7

DynamicArray with an inner class

import java.util.*;
public class DynamicArray{
 private Object[] b; private int n;

public DynamicArray() { … }
 public int length() { … }

public Object get(int i) { … }
public void set(int i, Object v) { … }

 // = an iterator over this DynamicArray
 public Iterator iterator() {return new DAIterator();}

 private class DAIterator implements Iterator {
 private int k= 0;

 public boolean hasNext() { return k < n; }

public Object next() {
 if (k == n) throw new ...(" .. ");
 k= k+1; return b[k-1];

}

 public void remove() {}
 }
}

inner class

8

DynamicArray with an inner class

Important points about the previous slide.

• 1. Class DAIterator is a private component of class

DynamicArray --private so that outsiders can’t see it.

• 2. Class DAIterator is in each instance of

DynamicArray.

• 3. An instance of DAIterator has access to the fields of

the instance of DynamicArray in which it was created --

see next slide. Because of this

• Array b can be referenced directly

• Variable n can be referenced directly

• 4. Field b of previous DAIterator is not needed.

• 5. Public method iterator to create an instance of

DAIterator.

• 6. Inner classes cannot have static components.

5

9

The memory model and nested classes
(remember, a nested class is static)

An instance of a nested class has a scope box, which
contains the name of class in which the nested class is
defined. Reason: So methods in Y can access static
variables of X.

Suppose a0.m() is called (see below). Instance a1 is
created, and its scope box is filled with name X.

public class X {
public static class Y {
...
}
public Y m() {return new Y();}

}

a0

X

a1

Y

X

scope box

m

10

The memory model and inner classes
(remember, an inner class is non-static)

An instance of an inner class X (say) has a scope box. It
contains the name Y (say) of the instance in which the
inner class appears. Reason: So methods of X can
reference fields of the instance of Y. Suppose

a0.iterator()

is called, where iterator is

public Iterator iterator()
{ return new DAIterator(); }

Instance a1 is created, and its scope box is filled with
name a0 of the instance in which the iterator occurs.

a0

DynamicArray
b

n DynamicArray

length get set

iterator DAIterator

a1

DAIterator
k

hasNext next

remove DAIterator

a0

scope box

6

11

Memory model:
referencing a non-static name

When looking for a non-static name:
Look first in the frame.
If not there, look (in bottom-up fashion) in the object x
(say) given by the scope box of the frame.
If not there, look (in bottom-up fashion) in the object y
(say) given by x’s scope box.
If not there, look (in bottom-up fashion) in the object
given by y’s scope box.
etc.

a0

DynamicArray
b

n DynamicArray

length get set

iterator DAIterator

a1

DAIterator
k

hasNext next

remove DAIterator

a0

scope box

next a1

return addressno pars
or local vars

frame for a
call on next

12

Memory model: referencing a static name

When looking for a static name in a frame for a call
on a static method --the frame’s scope box is the
name of a class C: Use the algorithm in the box below.

m C

return addresspars and
local vars

frame for a call on static method m

To find a static name given a class C:
Look in class C’s file drawer.
If not there, look in drawer for C’s superclass C1 (say).
If not there, look in drawer for C1’s superclass C2 (say).
… (continue in this fashion) ...

7

13

Memory model: referencing a static name

When looking for a static name in a frame for a call
on a non-static method --the frame’s scope box is the
name of an object a1 (say).
An inner class cannot contain static declarations. Only
inner-class objects have scope boxes. So execute this:

Object t= a1;
while (object t has a scope box)

t= the name in t’s scope box;

 Now use the algorithm in the previous slide for
finding a static name, using the class of object t

a0

DynamicArray
b

n DynamicArray

length get set

iterator DAIterator

a1

DAIterator
k

hasNext next

remove DAIterator

a0

scope box

next a1

return addressno pars
or local vars

frame for a
call on next

14

An example: responding to a button press
in a closeable window

Reading: Weiss, sect. B.3.4. Event handling: adaptors ...

Develop a program that brings
up this window on the monitor.
Only one button is enabled. When
the enabled button is pressed, it be-
comes disabled and the other be-
comes enabled.

Use this to show a use of inner
classes and anonymous classes.

A window on the monitor corresponds to an instance of
class JFrame. Get a window using

JFrame jf= new JFrame(“title of frame”);
jf.pack(); // Call after all components have been

// added to window.
jf.show(); // Make window visible on monitor

Window jf has no button or other components. Clicking
its close box hides the window but doesn’t terminate the
program.

8

15

An example: making window closeable

To have the program do something
when close button is pressed, need
to register a “window listener”, by

(1) implementing class WindowListener

(2) providing the seven methods of that class, each of
which deals with one of the boxes in the title bar of the
window or with the window as a whole.

(3) Executing the following statement of method JFrame,

addWindowListener(this);

which registers the instance in which it appears as being
a window listener, and

(4) putting the following statement in the method that
“listens” to a press of the close box:

System.exit(0);

See the next slide.

16

An example: making window closeable

import javax.swing.*;
import java.awt.event.*;

public class CloseableFrame extends JFrame
 implements WindowListener {

// Constructor: a Frame with good closebox, title t
public CloseableFrame(String t) {
 super(t);

 addWindowListener(this);
 }

// Terminate program. Called when closebox pressed
public void windowClosing(WindowEvent e)
 { System.exit(0); }

 // Each of the following methods deals with one
// of the window boxes or with some action on the
// window. They don’t do anything
public void windowClosed(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}
public void windowOpened(WindowEvent e) {}

}

9

17

An example: making window closeable

The last slide was messy. To help
out, Java provides an abstract class,
like CloseableFrame, that contains
empty methods for all seven methods.
The class is called WindowAdapter.

So we would like to do the following, but it’s illegal!!

import javax.swing.*;
import java.awt.event.*;

public class CloseableFrame
extends JFrame, WindowAdapter {

// Constructor: a Frame with good closebox
public CloseableFrame()
 { addWindowListener(this); }

// Terminate program. Called when closebox pressed
public void windowClosing(WindowEvent e)
 { System.exit(0); }

}

Can’t extend
two classes

18

An example: making window closeable
Solution to problem on previous
slide:

Provide an inner class, and let
the inner class extend WindowAdapter.

import javax.swing.*;
import java.awt.event.*;

public class CloseableFrame extends JFrame {

// Constructor: a Frame with good closebox
public CloseableFrame()
 { addWindowListener(new ExitOnClose()); }

private class ExitOnClose extends WindowAdapter {
// Terminate program when closebox pressed
public void windowClosing(WindowEvent e)

 { System.exit(0); }
}

}

creation of
instance of
inner class

10

19

An example: making window closeable
We can make the inner class
anonymous:

import javax.swing.*;
import java.awt.event.*;

public class CloseableFrame extends JFrame {

// Constructor: a Frame with good closebox
public CloseableFrame() {
 addWindowListener(new

 WindowAdapter() {
 // Terminate program when closebox pressed
 public void windowClosing(WindowEvent e)

 { System.exit(0); }
}

);
}

}

anonymous
class

20

An example: making window closeable
After all this, we tell you that
class JFrame provides a simpler
solution. Simply call JFrame’s
method setDefaultCloseOperation.

JFrame jf= new JFrame();
 jf.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);
jf.pack();
jf.show();

But constant EXIT_ON_CLOSE is in class JFrame only
since Java 2 version 1.3, not in version 1.2.

Also, you can’t use this method when using the older
class Frame

So, what was said on previous slides is still useful.

11

21

Responding to a button press

Develop a program that brings
up this window on the monitor.
Only one button is enabled. When
the enabled button is pressed, it be-
comes disabled and the other becomes enabled.

Listening to a button requires implementing this interface
--we need method ActionPerformed. A button press is
one kind of “ActionEvent”.

package java.awt.event;
import java.util.EventListener;

/** Implement this interface to have a class respond to
 ActionEvents for a Component. */
public interface ActionListener extends EventListener {

/** Called when e happens in a Component with
 which this ActionListener is registered.
 Process a button press */

public void actionPerformed(ActionEvent e) {
boolean b= (be.isEnabled());
be.setEnabled(!b); bw.setEnabled(b);

}
}

22

An example: responding to a button press

An instance of class JFrame is a
window on your monitor. An
instance of JButton is a Component
that can be placed in a JFrame.

Method main creates a new JFrame.
We have to show what a constructor
does and what actionPerformed does.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Applic extends JFrame
implements ActionListener{

private JButton bw= new JButton("first");
private JButton be= new JButton("second");

public static void main(String pars[])
{ Applic jF= new Applic("JFrame"); }

// Constructor: a frame: two buttons, title t
public Applic(String t) { ... }

public void actionPerformed(ActionEvent e) { ... }
};

12

23

An example: responding to a button press

The constructor first calls the con-
tructor of the superclass, giving it
the title for the window. It then adds
the two buttons to the window --
getContentPane is a JFrame method.
It enables one button and disables
the other. And it registers this in-
stance as a “listener” for button presses. Then, it tells
the JFrame to place all components. And its makes
the window visible. Isn’t that easy?

// Constructor: an Applic with two buttons and title t
public Applic(String t) {
 super(t);
 getContentPane().add(bw, BorderLayout.WEST);
 getContentPane().add(be, BorderLayout.EAST);

 bw.setEnabled(false);
 be.setEnabled(true);

 // Set the actionlistener for the buttons
 bw.addActionListener(this);
 be.addActionListener(this);

 pack();
 setVisible(true);
}

24

An example: responding to a button press

We can hide things by using an anonymous class.
public class Applic extends JFrame {

private JButton bw= new JButton("first");
private JButton be= new JButton("second");

// Constructor: an Applic with two buttons and title t
 public Applic(String t) {super(t);
 getContentPane().add(bw, BorderLayout.WEST);
 getContentPane().add(be, BorderLayout.EAST);

 bw.setEnabled(false);
 be.setEnabled(true);

 // Set the actionlistener for the buttons
 bw.addActionListener(al);
 be.addActionListener(al);

 pack(); setVisible(true);
 }

 private ActionListener al= new ActionListener() {
 // Process a button press

 public void actionPerformed(ActionEvent e) {
 boolean b= (be.isEnabled());
 be.setEnabled(!b); bw.setEnabled(b);
 }

 };
}

