
1

1

GUIs (Graphical User Interfaces)

Purpose of these two lectures: Provide you with basics
of writing GUI programs in Java, not an in-depth study.

Readings in Weiss: Appendix B does a good job of
laying out the basics. Study it!

Java 1.3 API specs: A reference, to be used whenever
you are writing a Java GUI program. Refer to it often!!

Java 1.0: GUI package java.awt.
Event handling awkward, cumbersome

Java 1.1: New event handling model
Java 1.2: Added package javax.swing, an

extension of awt.
Improved GUI components, more flexibility.

Programs shown in class are on course website for you
to download and try out.

Awt: Abstract window toolkit
API: Application Programmer Interface.
Event: Something that happens on the GUI --a button
press, keyboard action, mouse movement, etc.

2

awt versus Swing

package java.awt.*; package javax.swing.*;
Button JButton (extends Button)
Frame JFrame (extends Frame)
TextField JTextField (extends TextField)
no JToggleButton
Color no

Swing really is an extension of awt, providing more
flexibility and more features.

Many of awt’s classes are actually written in the native
windowing system on your computer --they are
“heavyweight”.

Most of Swing’s classes are written entirely in Java
itself --they are “lightweight”. A few, e.g. JFrame, are
heavyweight.

Many of the Swing API specs point you directly to
tutorials that show you how to use them. Very useful.

2

3

A window with component

editable
JTextfield

uneditable
JTextfield

JLabel

JPanel, green
background,
nothing painted
on it

JComboBox

JList

JRadioButtons

These
are in a
Button-
Group

JCheckBox

JButton

each row is a JPanel
with components in it

4

Basic Hierarachy of GUI classes

Class Component is abstract,
cannot be instantiated. But
its subclasses can.

A Component generally has a
position and size, can be painted,
can receive input events.

Component

Container

Window

Frame

JFrame

JComponent

JPanel

JButton

JCheckBox

JComboBox

JLabel

JRadioBox

JTextArea

JTextField

JFileChooser

Canvas

Dialog

JDialog

3

5

Component

A Component has a position and a size and can be
painted.

Methods in a Component --there are many more!

c.setSize(width, height);
c.setBackGroundColor(color);
c.setFont(f);
c.show();

Component

Container

Window JComponent

JPanel

Canvas

Frame

JFrame

Dialog

JDialog

6

Container: superclass of all Components that
 can hold other components.

Components are generally added to a Container c:

c.add(new JButton(“yes”));
c.add(new JButton(“no”), “north”);

Basic top-level containers:
JWindow: top-level window with no border
JFrame: top-level window with border, menubar
JDialog: top-level window used for a dialog

JPanel, primary use: as a container of other components.
Allows one to organize objects into a unit, often to
simplify layouts. See this on the next slides.

JPanel, secondary use: paint on it with graphics
commands --lines, circles, text, etc. (instead of using
class Canvas).

Container

Window JComponent

JPanelJFrameJDialog

4

7

Producing the window on slide 3

public class GUI extends JPanel
implements ActionListener {

 // Constructor: a demo window for CS211
 public GUI() {makeTheObjects();
 doTheLayout();
 theDrawButton.addActionListener(this);
 }

 // Handle the draw button push
 public void actionPerformed(ActionEvent evt) {...}

 private GUICanvas theCanvas;
 private JComboBox theShape;
 private JList theColor;
 private JTextField theXCoor;
 private JTextField theYCoor;
 private JRadioButton smallPic;
 private JRadioButton mediumPic;
 private JRadioButton largePic;
 private JCheckBox theFillBox;
 private JButton theDrawButton;
 private JTextField theMessage;

next slides

variables
that will
contain the
objects in
the window

8

private void makeTheObjects() {
theCanvas= new GUICanvas();

 theCanvas.setBackground(Color.green);
 theCanvas.setPreferredSize(new Dimension(99,99));

theShape= new JComboBox(
 new String[]{"Circle", "Square"});

theColor= new JList(new String[]{"red","blue"});
theColor.setSelectionMode(

ListSelectionModel.SINGLE_SELECTION);
theColor.setSelectedIndex(0);

theXCoor= new JTextField(3);
theYCoor= new JTextField(3);

ButtonGroup theSize= new ButtonGroup();
 smallPic= new JRadioButton("Small", false);
 mediumPic= new JRadioButton("Medium", true);
 largePic= new JRadioButton("Large", false);
 theSize.add(smallPic);
 theSize.add(mediumPic);
 theSize.add(largePic);

 theFillBox= new JCheckBox("Fill");
 theFillBox.setSelected(false);

 theDrawButton= new JButton("Draw");

 theMessage= new JTextField(25);
 theMessage.setEditable(false);
 }

5

9

private void doTheLayout(){
 JPanel topHalf= new JPanel();
 JPanel bottomHalf= new JPanel();

 // Lay out the top half
 topHalf.setLayout(new FlowLayout());

topHalf.add(theCanvas);
topHalf.add(new JLabel("Shape"));
topHalf.add(theShape);
topHalf.add(theColor);
topHalf.add(new JLabel("X coor"));
topHalf.add(theXCoor);
topHalf.add(new JLabel("Y coor"));
topHalf.add(theYCoor);

// Lay out the bottom half
 bottomHalf.setLayout(new FlowLayout());
 bottomHalf.add(smallPic);
 bottomHalf.add(mediumPic);
 bottomHalf.add(largePic);
 bottomHalf.add(theFillBox);
 bottomHalf.add(theDrawButton);
 bottomHalf.add(theMessage);

// Lay out the GUI
 setLayout(new BorderLayout());
 add(topHalf, "North");
 add(bottomHalf, "South");
 }

10

The main program
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class TrivialApplication extends JFrame{

public static void main(String args[]) {
JFrame jf= new TrivialApplication();
jf.setTitle("GUI Demo");

jf.getContentPane.add(new GUI());

jf.pack();

jf.show();

}
}

Create instance
of this frame,
give it a title

Add a new GUI
to frame jf

Add a component to a JFrame’s
content pane, not to JFrame itself.
Don’t ask why; just do it!

Tell jf to lay out
its components

Make frame
jf visible on
the monitor

6

11

Methods in components

Weiss explains the basic commands for dealing with
components like JLabel, JButton,JList; we don’t go into
detail here. Also look at API specs

JLabel jl: You can change the text whenever you want.

jl.setText(“whatever you want”);

JCheckBox jc: A checkbox is either checked or
unchecked:

jc.isSelected();
jc.setSelected(true); or jc.setSelected(false);
jc.setLabel(“whatever you want”);

ButtonGroup bg: Only one button (e.g. a JCheckBox)
in a ButtonGroup can be selected at any time. If the user
checks one, the others become unchecked. Simply add
buttons to a ButtonGroup

bg.add(jc);

12

Layout managers

Layout managers
A container is associated with a layout manager, which
does the layout of the components in the container.

Different layout managers, for different designs.

Defaults
JPanel: FlowLayout
Frame (and JFrame): BorderLayout

Setting container c’s layout manager
c.setLayout(new FlowLayout());

FlowLayout. Suppose components c1, c2, c3, …, cn are
added to a JPanel. The components are placed in that
order in a row, from left to right; whenever there is no
room, a new row is started. A scrollbar appears for the
JPanel if there is no room for all the rows. Make the
window width bigger (or smaller), and the number of
components in each row change accordingly.

BorderLayout: See next slide.

GridBagLayout: Gives most flexibility, but is most
difficult to use. We won’t cover it.

7

13

BorderLayout manager

Allows placement of 5 components, in 5 places: north,
east, south, west, and center.

Any of the five components can be a Jpanel, which can
contain its own subcomponents. So there is really no
limit on how many components can be there.

// add component c at position p on panel (or
// frame) p. place is one of “north”, “east”, “south”,
// “west”, “north”

p.add(c, p);

Program that produced this window is on next slide.

14

BorderLayout managers

import java.awt.*; import javax.swing.*;
public class BorderEx extends JFrame {
 public static void main(String[] pars) {
 JFrame f= new BorderEx(); // create instance

// of this class
 JPanel p= new JPanel(); // Create a JPanel

 p.setLayout(new BorderLayout());

 p.add(new JButton("North"), "North");
 p.add(new JButton("East"), "East");
 p.add(new JButton("West"), "West");
 p.add(new JButton("South"), "South");
 p.add(new JButton("Center"), "Center");

 f.getContentPane().add(p);

 f.pack();

 f.show();
 }
}

class is
a JFrame

use a
BorderLayout

add buttons
to Jpanel p

add panel to f

tell f to lay out it’s components

make frame
visible

