
Chapter 1

Correctness of Programs

Written by David Gries
Table of Contents

3.1. Assertions
3.2. The assignment statement
3.3. The conditional statement
3.4. The loop
3.5. Developing a loop from an invariant
3.6. Exercises (with solutions)

(0) Linear search
(1) Linear search
(2) Linear search with sentinel
(3) Binary search
(4) Partition
(5) Saddleback search
(6) Insertion sort
(7) Selection sort
(8) Find

3.7. Sample solutions
3.8. Finding loop invariants
3.9. Mathematical induction

1.1 Assertions

Let us call any true-false statement a predicate. For
example, x > y is a predicate —it is either true or
false in any machine state that gives arithmetic values
to x and y . Another example is “ n is the number
of negative values in array b[1..10] ”. A predicate can
be written in English or mathematics or Japanese or
any combination thereof.

An assertion is a predicate enclosed within braces
{ and } within a program to indicate that the predicate
is true at that point; it is asserted that the predicate
is true there. Note that the braces are not part of the
assertion; they are placed around the asssertion only
to delimit it.

The following notation, called a “triple”, is also a
predicate:

{Q} S {R}

where Q and R are predicates and S is a statement.
Q is called the precondition of S and R the post-
condition. This triple is equivalent to the following
English sentence:

Execution of statement S begun in a state
in which Q is true is guaranteed to termi-
nate, and R is true in the final state.

Here are three examples, all of which are true.

{x < 0} x = x + 1; {x < 1}

This says that execution of x = x + 1; with x < 0
terminates with x < 1 .

{true} if (x ≤ y) z = x;
else z = y;

{z = min(x, y)}

This says that execution of the conditional statement
beginning in any state (true represents the set of all
states) terminates with x equal to the minimum of x
and y .

{false} while (true) do {true}

This example is more subtle. Since the loop never
terminates, it certainly cannot terminate in any state.
The predicate false stands for the set of no states;
false is always false.

The above predicate is always confusing at first.
For any statement S and predicate R , the triple

{false} S {R}

is false only when some state s (say) satisfies the pre-
condition and execution of S in s either does not
terminate or terminates with R false. Since no such
state s satisfies the precondition, the triple is true.

Note that a triple {Q} S {R} says absolutely
nothing about S executed in a state in which Q is
false. It says only something about execution begun
when Q is true.

1.1

1.2 CHAPTER 1. CORRECTNESS OF PROGRAMS

Any program can be specified by giving a pre- and
post-condition pair. Here are three examples:

Specification of an algorithm to sort b[m..n] :

precondition : m ≤ n− 1
postcondition : b[m..n] is a permutation of

its initial value and

b[m] ≤ b[m + 1] ≤ · · · ≤ b[n]

Specification of an algorithm to read 10 integers and
print their sum:

precondition : the input contains at least
10 integers a0, . . . , a9

postcondition : the input contains 10 fewer
integers and

output contains a0 + · · · + a9

Specification of an algorithm to find an integer approx-
imation to the square root of an integer:

pre : 0 ≤ b

post : a2 ≤ b ≤ (a + 1)2

We annotate a program by inserting assertions to
help the reader understand what is true at various
points of the program. A program with assertions in
it is called an annotated program.

When two assertions appear adjacent within a pro-
gram, the second is a consequence of the first. We often
insert the word “hence” at the beginning of the second
assertion to emphasize this point.

Examples In these examples, assume that all vari-
ables have type integer.

x = 2; {x = 2}
This indicates that x has the value 2 after execution
of x = 2 .

x = 2; {x = 2} y = 10; {x ∗ y = 20}
This indicates that x has the value 2 after execution
of the first statement and that x ∗ y equals 20 after
execution of the second.

{y > 0 and x ≥ 0} z = x div y; {0 ≤ z ≤ x}
This says that if y > 0 and x ≥ 0 , then execution
of z = x div y terminates with 0 ≤ z ≤ x . It says
nothing about execution of the statement when y = 0
(a runtime error, division by 0 , would occur) or if
y < 0 .

{x = X and y = Y }
Swap x and y;
{x = Y and y = X}

This example illustrates the use of names for initial or
final values of variables. These names do not belong
in the program, but only in its description. Here is the
statement rendered in English: “Under the condition
that x contains a value X and y a value Y , after
execution of Swap x and y; , x contains Y and y
contains X .”

Here’s the last example:

{x ≤ 0}
{hence, x ≤ 5}
x = x + 20;
{x ≤ 25}
{hence, x ≤ 100}

1.2 The Assignment Statement

Consider an assignment statement x = e; , where x is
a simple variable. Suppose its execution is supposed to
truthify a postcondition R (i.e. make R come true).
How do we determine in what initial states that will
happen? There is a simple way to determine the pre-
condition. First, a definition:

Rx
e stands for a copy of R in which all

occurrences of x are replaced by e.

Examples

(0) (x = y)x
w = (w = y)

(1) (x = y)x
x+2 = (x + 2 = y)

(2) (x = x + 2)x
z+x+y = (z + x + y = z + x + y + 2)

We assert that the following always holds:

{Rx
e} x = e; {R}

Actually, R is true after execution of x = e; if
and only if Rx

e is true before. (Of course, we assume
that evaluating e will not result in a runtime error,
such as division by 0 or subscript out of range.)

Examples

(0) {2 = 2} x = 2; {x = 2}
Since 2 = 2 is true, this is equivalent to {true} x =
2; {x = 2} .

(1) {x + 1 ≥ 0} x = x + 1; {x ≥ 0}
The precondition can be written as x ≥ −1 .

(2) {(x− y) ∗ y + y ∗ y = 5}
x = x− y;
{x ∗ y + y ∗ y = 5}

The precondition can be written as x ∗ y = 5 .

1.4. THE LOOP 1.3

1.3 The Conditional Statement

Consider the following conditional statement, which
sets z to the maximum of x and y :

if (x ≥ y) z = x;
else z = y;

We annotate it fully as follows:

{true}
if (x ≥ y) {true and x ≥ y}

{hence, x = max(x, y)}
z = x;
{z = max(x, y)}

else {true and x < y}
{hence, y = max(x, y)}
z = y;
{z = max(x, y)}

{z = max(x, y)}
Rarely will we annotate a program in such detail; it is
done here only to show you a fully annotated program.
Let us discuss a few points.

• The precondition of the then-part of an IF is a
combination of the precondition of the IF and
the if-condition; it simply states what is known
at that point based upon what is known before
the IF.

• The precondition of the else-part of an IF is a
combination of the precondition of the IF and
the falsity of the if-condition; it simply states
what is known at that point based upon what is
known before the IF.

• Note the use of two assertions together; the first
implies the second.

• The postcondition of an IF is the “or” of the
postconditions of the then-part and else-part. In
this case, the two parts have the same postcon-
dition.

1.4 The loop

Consider the following loop, which stores in variable s
the sum of the elements of array b[1..10] :

i = 1; s = b[1];
while (i 	= 10) {

i = i + 1;
s = s + b[i];

}

How can we understand it? Is there a general way to
look at any loop that provides understanding? The
answer is yes. We illustrate the method on this loop
and then give the general method. Let us annotate the
program, where we use the predicate P to describe the
values of s and i before (and after) each iteration:

P : 1 ≤ i ≤ 10 and

s is the sum of first i elements of b.

Here is the annotated loop.

{true}
i = 1; s = b[1];
{P}
while (i 	= 10) {

{P and i 	= 10}
i = i + 1;
s = s + b[i];
{P}

}
{P and i = 10}
{hence, s is sum of b[1..10]}

Make sure that you understand each assertion, i.e.
check that it is true at the point of execution where
it is placed. One rule to use here is that if P is true
after one iteration of the loop (after execution of the
loop body) then it is true before the next iteration.
This should be obvious.

Predicate P is called an invariant relation of the
loop, because it is invariantly true before and after
each iteration. Predicate P is nothing more than a
definition of variables i and s that holds before and
after each iteration.

We must also be sure that the loop terminates.
We do this by giving an expression t (just to have a
name for it) that gives an upper bound on the number
of iterations still to be performed and show that it
decreases with each iteration. In this case, for t we
can use the expression 10− i , which gives exactly the
number of iterations still to be performed.

Expression t is called a bound function of the loop.
We now state what must be done to prove that

{Q} while (B) S {R}

holds, using an invariant P and bound function t .

• Prove that P is true before the loop: prove that
Q implies P .

• Prove that P is indeed a loop invariant: prove
{P and B} S {P} .

1.4 CHAPTER 1. CORRECTNESS OF PROGRAMS

• Prove that upon termination R holds: prove
that P and ¬B implies R .

• (3) Prove that t decreases with each iteration.

• Prove that t is indeed an upper bound on the
number of iterations. This means: if there is
another iteration to perform, then t > 0 , i.e.
P and B implies t > 0 .

A loop is usually annotated as shown below. This
format makes clear what the invariant and bound func-
tion are and allows the invariant to appear only once.

{inv : P}
{bd : t}
while (B) S

Here are two annotated loops. Practice under-
standing them using the five rules given above. Get
in the habit of viewing a loop only in terms of whether
these five rules hold or not.

(0) This first program finds the first position i of
value x in array b[1..100] , given that x is in b . The
specification is given by Q and R , the pre- and post-
conditions.

{Q : x is somewhere in b[1..100]}
i = 1;
{inv : x�∈b[1..i− 1]; hence, x∈b[i..100]}
{bd : 100 − i}
while (b[i] 	= x) i = i + 1;
{R : b[i] = x}

(1) This second example calculates the quotient q
and remainder r when x is divided by y . For y > 0
and x ≥ 0 , q and r are defined (uniquely) by the
predicate

R : x = q ∗ y + r and 0 ≤ r < y

{x ≥ 0 and y > 0}
q = 0; r = x;
{Q : x ≥ 0 and y > 0 and q = 0 and r = x}
{inv : x = q ∗ y + r and 0 ≤ r}
{bd : r div y}
while (r ≥ y){ r = r − y; q = q + 1; }
{R}

1.5 Developing a loop from an
invariant

We state a general method for developing a loop when
given a precondition Q , a postcondition R , an in-
variant P , and a bound function t . There are three
steps to this:

• Find initialization that makes P true.

• Find the loop condition as follows: find a pred-
icate NB such that from P and NB we can
conclude that R is true. Take as loop condition
the predicate ¬NB .

• Develop the body of the loop as follows:

(a) Get an initial version of the loop body by
finding a way to make progress (i.e. get closer to
termination, decrease bound function t).

(b) Modify the loop body so that P is true after
its execution.

Example
Consider writing a program to store zeros in even

positions of array b[1..n] . We are given the following:

Precondition Q1 : 0 ≤ n

Postcondition R : b[2], b[4], . . . , b[2 ∗ (n div 2)]
are zero

Invariant P : 2 ≤ i ≤ n + 2 and
i is even and
b[2], b[4], . . . , b[i− 2] are zero

Bound function t : n + 1 − i

Step 1. We can truthify P with i = 2; .
Step 2. If P is true, and if i > n , then R is true.
Hence, choose NB to be i > n . So condition B is
i ≤ n .
Step 3. To make progress, add 2 to i . But before
this is done, 0 has to be stored in b[i] .

Hence, the program is

i = 2;
{inv : P (given above)}
{bd : t (given above)}
while (i ≤ n) { b[i] = 0; i = i + 2; }

1.6 Exercises (with solutions)

Write algorithms for the following problems. The so-
lutions are in Sec. 1.7.

(0) Linear search.

1.6. EXERCISES (WITH SOLUTIONS) 1.5

Given is an array b[m..n] , where m ≤ n+1 . Given
is a value x , which may or may not be in b[m..n] .
We want an algorithm that stores in i the index of
x in b[m..n] , if x ∈ b[m..n] , and stores n + 1 in i
otherwise. Here is the precondition Q , postcondition
R , invariant P , and bound function t for a loop:

Q : m ≤ n + 1
R : m ≤ i ≤ n + 1 and

x�∈b[m..i− 1] and
(i = n + 1 ∨ x = b[i])

P : m ≤ i ≤ n + 1 and
x�∈b[m..i− 1]

t : n + 1 − i

(1) Linear search (same problem as (0) but a differ-
ent invariant and thus a different algorithm).

Given is an array b[m..n] , where m ≤ n+1 . Given
is a value x , which may or may not be in b[m..n] . We
want an algorithm that stores in i the index of x in
b[m..n] if x ∈ b[m..n] and stores n+1 in i otherwise.
Here is the precondition Q and postcondition R , as
well as the invariant P and bound function t , which
uses a fresh integer variable f :

Q : m ≤ n + 1
R : m ≤ i ≤ n + 1 and

x�∈b[m..i− 1] and
(i = n + 1 ∨ x = b[i])

P : m ≤ i ≤ f ≤ n + 1 and
x�∈b[m..i− 1] and
(f = n + 1 ∨ x = b[i])

t : f − i

(2) Linear search with sentinel.
Write a loop (with initialization) for the following

problem. Given is a value x , which may or may not
be in b[m..n] . We want an algorithm that stores in
i the index of x in b[m..n] if x ∈ b[m..n] and stores
n+ 1 in i otherwise. Array element b[n+ 1] may be
changed.

The difference between this exercise and exercise
(0) is that here we can use position b[n + 1] of the
array to contain the value we are looking for —it can
act as a sentinel to stop the search. Note how the
invariant requires x = b[n + 1] , and, since this is not
true initially, the initialization must store x in b[n +
1] .

Here is the precondition Q , postcondition R , and
invariant P and bound function t for a loop:

Q : m ≤ n + 1

R : m ≤ i ≤ n + 1 and
x�∈b[m..i− 1] and
(i = n + 1 ∨ x = b[i])

P : m ≤ i ≤ n + 1 and
x�∈b[m..i− 1] and
x = b[n + 1]

t : n + 1 − i

(3) Binary search.
Given is a sorted array b[1..n] —i.e. b[1] ≤ b[2]

≤ b[3] ≤ · · · ≤ b[n] . We want to search it for a
value x .

The assertions concerning the algorithm are writ-
ten assuming the existence of two “virtual” elements
b[0] = −∞ and b[n + 1] = +∞ . These two array
elements don’t exist, but assuming they do allows us
to write the specification and assertions more easily.
The algorithm won’t refer to them, of course.

If x ∈ b , the algorithm finds the rightmost occur-
rence of x ; if x �∈ b , it finds the position after which
x should be inserted (but doesn’t insert it).

For example, for b[1..6] = (2, 4, 4, 4, 4, 5) we give
below various values of x and the corresponding re-
sulting position i :

x : 1 2 3 4 5 6
i : 0 1 1 5 6 6

Here is the given information:

Q : 0 ≤ n

R : 0 ≤ i ≤ n and
b[i] ≤ x < b[i + 1]

P : 0 ≤ i < j ≤ n + 1 and
b[i] ≤ x < b[j]

t : j − i− 1

(4) Partition.
Given is array segment b[m..n− 1] , with n > m ,

that satisfies
m n− 1

b X ?

(Here, X is NOT a variable of the program; it is just
a name that is used to denote the value initially in
b[m] . X may not appear in the program.) We want
an algorithm to permute (rearrange) the values of b
and store a value in k to truthify

m k n− 1
R : b ≤ X ≥ X

The loop invariant P is to be
m h k n− 1

P : b X ≤ X ? ≥ X

1.6 CHAPTER 1. CORRECTNESS OF PROGRAMS

The loop has as its postcondition
m k h n− 1

P : b X ≤ X ≥ X

Since R′ is different from R , some final statements
have to follow the loop. The bound function t is k−
h + 1 .

Write the algorithm as a procedure with the Java
heading

// Given b[m..n-1] nonempty, truthify R

// (see above) and return k

public static int partition(int [] b,
int m, int n)

(5) Saddleback search.
A value x is known to be in array b[1..m, 1..n] .

Further, each row of b and each column of b is in
ascending order. Store in i and j a position of x in
b . The precondition Q and postcondition R are

Q : x∈b[1..m, 1..n] and
each row of b is ordered and
each col of b is ordered

R : x = b[i, j], which can be written as
x∈b[i..i, j..j].

The invariant and bound function of the loop of the
algorithm are

inv : 1 ≤ i ≤ m and
1 ≤ j ≤ n and
x∈b[i..m, 1..j]

bd : j + m− i

Write the algorithm.

(6) Insertion sort.
Write an algorithm to sort array b[m..n] . The par-

ticular invariant we choose for the main loop leads to
an algorithm that is known as Insertion sort. Here is
the information:

Q : m ≤ n

R : b is a permutation of its initial value and
b[m] ≤ b[m + 1] ≤ · · · ≤ b[n]

P : m ≤ i ≤ n and b[m..i] is sorted
t : n− i

We can write invariant P as:
m i n

R : b sorted

(7) Selection sort.
Write an algorithm to sort array b[m..n] . The in-

variant we choose leads to an algorithm called Selec-
tion sort. Here is the information:

Q : m ≤ n

R : b is a permutation of its initial value and
b[m] ≤ b[m + 1] ≤ · · · ≤ b[n]

P : m ≤ i ≤ n and

m i n
b sorted, ≤ ≥

t : n− i + 1

(8) Find.
Given is an integer array segment b[m..n− 1] and

an integer i satisfying m ≤ i < n . Find a value V
(say) and permute b[m..n− 1] so that the following is
truthified:

m i n− 1
R: b ≤ V V ≥ V

Note that if i = m then the smallest value will be
stored in the first position b[m] ; if i = n − 1 the
largest value will be stored in the last position b[n−1] ,
and if i = (m + n) div 2 then the median is stored
in b[i] . Thus, the algorithm can be used to find the
value that belongs in any position of the array.

Here is the loop invariant for the loop of the algo-
rithm:

P : m ≤ h ≤ i ≤ k < n and

m h i k n− 1
b ≤ V V is in here ≥ V

The bound function is k + 1 − h .
Here are some hints. First, the value V is not

known until the loop terminates; we just use V as a
name for the value to be found. Second, each iteration
of the loop should call function partition of example
(4) above. Third, it is not necessary to sort the array
completely; it is only necessary to permute it until it
can be recognized that V is in b[i] .

1.7 Sample solutions

(0) (Linear search)

i = m;
while (i 	= n + 1 && x 	= b[i]) i = i + 1;

1.7. SAMPLE SOLUTIONS 1.7

(1) (Linear search)

i = n; f = n + 1;
while (i 	= f) {

if (x 	= b[i]) i = i + 1;
else f = i;

}

(2) (Linear search with sentinel)

i = m; b[n + 1] = x;
while (x 	= b[i]) i = i + 1;

(3) (Binary search)

i = 0; j = n + 1;
{inv : 0 ≤ i < j ≤ n + 1 and

b[i] ≤ x < b[j]}
{bound function : j − i− 1}
while (j 	= i + 1) {

int e = (i + j) div 2;
{i < e < j}
if (b[e] ≤ x) i = e;
else j = e;

}

(4) (Partition algorithm)

public static int partition(int [] b,
int m, int n);

int h = m + 1; int k = n− 1; int x = b[m];
{inv : P (given in problem)}
while (h ≤ k) {

if (b[h] < x) h = h + 1;
else if (b[k] > x) k = k − 1;
else {
Swap b[h] and b[k];
h = h + 1; k = k − 1;

}
}
{R′}
Swap b[m] and b[k];

The algorithm always swaps values that are equal to
x . Swapping them increases the likelihood that many
occurrences of x in b will lead to segments of almost
equal size.

(5) (Saddleback search)

i = 1; j = n;

{inv : 1 ≤ i ≤ m and 1 ≤ j ≤ n and
x∈b[i..m, 1..j]}

while (b[i, j] 	= x) {
if (b[i, j] < x) i = i + 1;
else j = j − 1;

}

(6) (Insertion sort) —as a procedure)

// Sort b[m..n] –by permuting its elements
public static void insertionSort(int []b,

int m, int n);
int i = m;
{inv : b[m..i] is sorted}
while (i < n) {
i = i + 1;
{Sort b[m..i] given b[m..i− 1] sorted. We give

this loop without an invariant. It moves
the value initially in b[i] toward the front
until it reaches its final position.
int j = i;
while (j 	= m && b[j − 1] > b[j]) }
Swap b[j] and b[j − 1];
j = j − 1;

}
}

(7) (Selection sort)

i = m;
while (i < n) {

int j;
// Store in j the pos. of the min of b[i..n];

j = i;
for (int k = i + 1; i ≤ n; i = i + 1) {

if (b[k] < b[j]) j = k;
Swap b[j] and b[i];
i = i + 1;

}

(8) (Find)

{See exercise for a description}
int h = m; int k = n− 1;
while (h 	= k) {

int p;

1.8 CHAPTER 1. CORRECTNESS OF PROGRAMS

partition(b, h, k + 1, p);
if (i < p) k = p− 1;
else if (i = p) {
h = p; k = p;

}
else h = p + 1;

}

1.8 Finding Loop Invariants

A complete discussion of finding invariants in beyond
the scope of this course. However, a few important
comments can be made.

First, postcondition R of a loop need only be true
upon termination of the loop, while the invariant is
true not only upon termination but before and after
each iteration. Therefore, the invariant is true in more
states than is the postcondition, and the invariant can
be looked upon as a generalization of the postcondi-
tion. Thus, one good way to find (at least a first ap-
proximation to) the invariant is to generalize the post-
condition, to change the postcondition so that it is true
in more states.

Furthermore, the invariant has to be true just be-
fore execution of the loop, so one should generalize
the postcondition into an invariant that can be easily
established.

Here are three useful ways to do this.

• If the postcondition has the form (b and c) for
some expressions b and c , then delete either b
or c —use either c or b for the invariant.

This method was used to find the invariant for
exercise 0 (Linear search).

• In the postcondition, replace some expression by
a fresh variable (and put suitable bounds on the
fresh variable).

For example, the postcondition for the loop that
sums the elements of array b[1..10] is

s is the sum of first 10 elements of b

and we replace ‘10’ in the postcondition by a
fresh variable i to get the invariant

0 ≤ i ≤ 10 and
s is the sum of the first i elements of b.

This invariant we can make true by executing
i, s = 0, 0 .

The technique is used in example 1 (second ver-
sion of Linear search) and example 3 (Binary
search).

• When the pre- and post-conditions are given by
diagrams, draw the invariant as a diagram that
includes both the pre- and the post-condition as
“instances” of it.

For example, this technique was used in algo-
rithm (5) (Partition). In Q , two segments of b
are shown: one contains X and the other con-
tains a bunch of values in any order (shown by
“?”). R′ has three sections: one contains X ;
another, values ≤ X ; and another, values ≥ X .
The final invariant P has all four sections. One
gets Q from P by having the sections with val-
ues ≤ X and ≥ X empty, and one gets R′

from P by having the section with mixed val-
ues (?) empty.

1.9 Mathematical Induction

One proves that a statement P (i) is true for all natu-
ral numbers (nonnegative integers) i by mathematical
induction. This consists of two steps:

• Base case: Prove that P (0) is true.

• Inductive case: Assume P (k) holds, where
0 ≤ k , and, using this assumption, prove that
P (k + 1) holds.

Step (1) is sometimes replaced by the following step
(1’), but one can prove that they are equivalent:

(1’) Inductive case: Assume P (0) , · · · ,
P (k) , where 0 ≤ k , and, using this as-
sumption, prove that P (k + 1) holds.

Mathematical induction can be generalized to use
any integer K (say) as the lower bound, instead of 0.
To prove by mathematical induction that P (k) holds
for all integers k ≥ K , where K is some integer,
prove the following.

1. Base case: Prove that P (K) is true.

2. Inductive case: Assume P (k) holds, where
K ≤ k , and, using that assumption, prove that
P (k + 1) holds.

Example 0. Let P (k) be:

P (k) : 2 + 4 + ... + 2 ∗ k = k ∗ (k + 1).

We prove that it holds for all natural numbers k .

1.9. MATHEMATICAL INDUCTION 1.9

1. Base case. For k = 0 , 2 + 4 + · · · + 2 ∗ k is,
by convention, 0 (it is the sum of zero integers).
Therefore, the base case reduces to 0 = 0 , which
is true. (You can also see easily that 2+4+ · · ·+
2 ∗ k = k ∗ (k + 1) for k = 1 .) Hence, P (0)
and P (1) both hold.

2. Inductive case. Assume 2 + 4 + · · ·+ 2 ∗ k =
k ∗ (k + 1) . We have,

2 + 4 + · · · + (2 ∗ (k + 1))
= 〈explicitly state the term 2 ∗ k 〉

(2 + 4 + · · · + 2 ∗ k) + 2 ∗ (k + 1)
= 〈use the inductive assumption〉

k ∗ (k + 1) + 2 ∗ (k + 1)
= 〈arithmetic〉

k2 + 3 ∗ k + 2
= 〈arithmetic〉

(k + 1) ∗ (k + 2)

which proves P (k + 1) .

Example 1. Let P (k) be:

P (k) : 3k ≥ 2 ∗ k + 1.

We show that it holds for all natural numbers k –note
that 30 = 1 :

1. Base case. For k = 0 , 1 = 3k = 2 ∗ k + 1 , so
P (0) holds.

2. Inductive case. Assume 3k ≥ 2 ∗ k + 1 . We
have,

3k+1

= 〈arithmetic〉
3k ∗ 3

≥ 〈inductive assumption〉
(2 ∗ k + 1) ∗ 3

= 〈arithmetic〉
6 ∗ k + 2 + 1

= 〈arithmetic〉
2 ∗ (3 ∗ k + 1) + 1

≥ 〈arithmetic〉
2 ∗ (k + 1) + 1

which proves P (k + 1) .

Remark Note the forms of proof of the inductive case
in examples 0 and 1. In each, the proof consists of
a sequence of equalities and inequalities, which show
that the formula on the first line equals (in the first
case) or is at least (in the second case) the formula on
the last line. With each equality or inequality is given
a justification for it.

Mathematical induction will be used in a number
of places later on in CS211. Mathematical induction
can be generalized to work over other sets as well as
the integers, but the generalization is beyond the scope
of CS211.

