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Algorithmic analysis

Introduction. This handout tells you what you are responsible for concerning the analysis of algorithms

You are responsible for:

Weiss, chapter 5, as follows:

•5.1 What is algorithmic analysis?

•5.2 Examples of running time

•5.3 NO, not responsible for this No.

•5.4 Definition of Big-oh and Big-theta. You should
be able to use these definitions.

•5.5 Everything except harmonic numbers. This
includes the repeated doubling and repeated having
stuff.

•5.6. No, not responsible for this section. NO.
Instead, you should know the following algorithms
as presented in the handout on correctness of
algorithms and be able to determine their order of
execution time: linear search, binary search,
partition, insertion sort, and selection sort

•5.7 Checking an algorithm analysis

•5.8 Limitations of big-oh analysis

•The material presented in this handout (you should
be able to perform the analysis of the mergesort
execution time and know how to fix Quicksort).

Order of execution time of mergesort

// sort b[h..k]
public static void mergesort(int[] b, int h, int k) {

if (k+1-h <= 1)
return;

int e= (h+k+1)/2;
mergesort(b, h, e-1);
mergesort(b, e, k);
merge(b, h, e, k);

}

We know that merge takes time proportional to the
number of elements in b[h..k], i.e. it is an O(k+1-h)
algorithm. Suppose it takes s*(k+1-h) steps. Based
on this assumption, we figure out the order of
execution of mergesort.

Define T(n) to be the number of steps it takes to
mergessort an array of size n.

We have:

20: T(1) = 1  (assume 1 unit of time for executing

     the base case)

21:          T(2)
=      <look at the function body>

               2*T(1) + 2s
=      <use T(1)>

               2*1 + 2s               Note that 2 = 21 *1

22:          T(4)
=      <look at the function body>

               2*T(2) + 4s
=      <use T(2)>

               2*(2+2s) + 4s
=      <arithmetic>
    4 +  8s              Note that 8 = 22 *2

23:          T(8)
=      <look at the function body>

               2*T(4) + 8s
=      <use T(4)>

               2*(4+8s) + 8s
=      <arithmetic>
    8 +  24s              Note that 16 = 23 *3

We see a pattern here: T(2p) = 2p  + 2p *p*s
or:   T(n) = n + n*log(n)*s

And indeed, we can prove this formula using
INDUCTION. Proving a theorem by induction is
akin to understanding a recursive function. We prove
the theorem for a base case. Then, we prove it for
the recursive (inductive) case under the assumption
that it holds for smaller cases.

Theorem: T(2p) = 2p  + 2p *p*s

Proof of base case: T(20) = T(1) = 1 (earlier
analysis)

Proof of recursive case: Assume p>0. We prove the
theorem under the assumption that

T(2k) = 2k  + 2k *k*s

holds for 0<=k<p:
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T(2p)
=      <look at the function body>

               2*T(2p-1) + 2p s
=      <use assumption, with k=p-1>

               2*(2p-1  + 2p-1 *(p-1)*s) + 2p s
=      <arithmetic>
     2p + 2p *(p-1)*s + 2p s
=      <arithmetic>
     2p + 2p *p*s

Isn’t that simple?

From the theorem, we see that mergesort takes time
O(n log n) to sort an array of size n.

Discovering the theorem. Take a look at how we
discovered the theorem. We calculated T(1), T(2),
T(4), T(8), etc. until we saw a pattern. Then, we just
formulated the theorem as that pattern.

A more general theorem

We have proved that mergesort takes time O(n log
n) to sort an array of size n, when n is a power of 2.
It is easy to show that it then takes O(n log n) time
for an array of any size.

But we can do more. The analysis that we did holds
whenever the recursive method satisfies certain
assumptions, which we describe in this theorem:

Theorem: Suppose a recursive method that
processes an array takes 1 step for an array of size 0
or 1 and, for an array of size n>1 does two things (in
any order):

• Performs O(n) steps, processing the array.
• Recursively calls itself twice to process the first
half and the last half of the array, of the same size.

Then the algorithm takes time O(n log n) to process
an array of size n.

Let’s look at quicksort. In the best case, each call on
partition partitions the array into two equal halves --
at least, each contains no more than 1/2 of the array.
Quicksort then partitions these two halves. Further,
method partition takes time proportional to the size
of the array segment that it is partitioning. Therefore,
in the best case, quicksort takes time O(n log n) to
sort an array of size n.

It has been shown that the expected or average case
time for quicksort is also O(n log n), but the analysis
is beyond the scope of CS211.

In the worst case, quicksort is O(n2).
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// Sort b[h..k]
public static void quicksort (int[] b, int h, int k) {

// inv: the segment to be sorted is in ascending order
//      if and only if b[h..k] is in ascending order
// bound function: size of segment b[h..k]
while (true) {

if (k+1-h <= 10) {
insertionSort(b,h,k);
return;

      }

medianOf3(b,h,k);
// {b[h] is between b[(j+k/2)] and b[k]}

int j= partition(b,h,k);
// {b[h..j-1] <= b[j] <= b[j+1..k]}

if (j-h <= k-j) {
quicksort(b,h,j-1); // sort the smaller segment
// {original segment is sorted if b[j+1..k] is}
h= j+1;
}

else {
quicksort(b,j+1,k); // sort the smaller segment
// {original segment is sorted if b[h..j-1] is}
k= j-1;

}
}

}

// Permute b[h], b[k], and b[(h+k)/2 to store their
// median in b[h]
public static void medianOf3(int b, int h, int k)

Fixing Quicksort so that it takes at most O(n) space
to sort an array of size n and so that it is more
efficient. Here’s the original quicksort:

// sort b[h..k]
public static void quicksort(int b, int h, int k) {

if (k+1-h <= 1)
{ return; }

int j= partition(b,h.k);
// {b[h..j-1] <= b[j] <= b[j+1..k]}
quicksort(b,h,j-1);
quicksort(b,j+1,k);

}

It has problems.

1. The pivot value b[h] may be the smallest element
of the array, and if so, partition creates one segment,
b[h..j-1], that is empty and one segment, b[j+1..k]
that contains all but one element. If this happened at
each iteration, the depth of recursion would be k-h,
so O(k-h), that is, linear space and would take O(k-
h)2) time.

We can’t solve this problem completely. But we can
help it a bit by making b[h] be the median of three of
the array values before doing the partition. This give
more chance that partition will produce segments of
nearly equal size.

2. Quicksort is particularly inefficient on small
arrays, because of all the method calls. By
experiment, it has been determined that insertion sort
does better on arrays of about 10 or fewer elements.

So, we change the base case from an array of size 1
or less to an array of size 10 or less and use insertion
sort to sort it.

3. We have not solved the problem that in some
cases the depth of recursion will be linear in the size
of the array, so that the method will take time
proportional to the size of the array.

If we can make the depth of recursion at most
logarithmic in the size of the array, then space will
also be logarithmic. At each call, we have two
segments to sort: b[h..j-1] and b[j+1..k]. We solve
our problem by sorting only the smallest one
recursively and using iteration for the other. This
works because the smaller one is smaller than half
the array size, so that at each recursive call, the array
size is at least halved, leading to logarithmic
recursion depth.


