
1

Assignment 8. Implementing type integer

Due on Tuesday, 4 December, by midnight (submitted electronically). Download class List and a skeleton of
class BigInt from the assignment subpage of the course website.

Introduction. As you know, types int and long deal
only with a finite set of the integers. In this assign-
ment, we ask you to implement type integer, which
contains all the integers, in a class BigInt. This will
provide you with a more thorough understanding of
representing integers in different bases. You will use
type BigInt to do a calculation or two.

Each instance of BigInt contains an instance of class
List, which contains the unsigned integer. Use our
class List. Also, we provide a skeleton of BigInt,
with all the methods that you need defined in it and
with many methods filled in. This simplifies your
task a great deal.

Maintaining an integer in some base. Let base b be
an integer, 2 <= b. Then a positive integer n can be
written as

n = n0*b0 + n1*b1 + … + nk-1*bk-1 + nk*bk

where:

(0) Each ni satisfies 0 <= ni < b

(1) The high-order digit nk is not 0

The integer 0 is represented by 0*b0, or 0.

For example, the integer 341 in decimal is

341 = 1*100 + 4*101 + 3*b2

Here, k is 2.

Comparing integers. Given the base b represen-
tations of nonnegative m and n, the expression n < m
can be evaluated as follows. If one is longer than the
other, the shorter one is smaller. Otherwise, compare
n0 and m0 , then n1 and m1, then n2 and m2 , etc.; at
each step, maintain a variable d that is -1, 0, or 1,
depending on whether the part of n that has been
compared thus far is less than, equal to, or greater
than the part of m that has been compared.

Addition. Addition in base b is just like addition in
base 10, e.g. we evaluate 5432+649 as shown below,
where the top line represents the carry from the
previous (lower-order) digit.

 0 1 0 1 (this is the carry)

5 4 3 2

 + 6 4 9 DONE IN BASE 10

6 0 8 1

Thus, 2+9 = 11, which is treated as 1 with a carry of
1.

Then, 1+3+4 = 8, which is treated as 8 with a carry
of 0.

Then, 0+4+6 = 10, which is treated as 0 with a carry
of 1.

Then, 1+5=6, which is treated as 6 with a carry of 0.

Note that the digits are processed from low order to
high order.

When carrying this out in base b, suppose the carry
plus two digits sums to s. Then the value for that
position is s%b and the carry is s/b.

Subtraction. Subtraction of nonegative integers is
similar. Here, we always subtract the larger integer
from the smaller, so that a nonnegative integer
results. This requires comparing the integers before
doing the subtraction. And, when subtracting, there
may be a “carry” of -1, as shown below.

 -1 -1 -1 (this is the carry)

5 4 3 2

 - 6 2 9 DONE IN BASE 10

4 7 0 3

For a particular position, suppose the carry plus the
first digit minus the second digit is s. If s>=0, then
the value for that position is s and the carry is 0. If
s<0, then the value for that position is s+b (where b
is the base) and the carry is -1.

The carry from the high-order position is always 0,
because the smaller integer is subtracted from the
larger one.

There is often a need to eliminate leading 0’s. For
example, using the scheme above, 5000-4999 =
0001, and this has to be changed to 1.

2

Class List. We use class List from the previous as-
signment. Use our version (from the course web site),
because we have added some methods to it (e.g.
size()). Before you begin, become familiar with the
methods in class List and their specifications.

Class BigInt. Before you implement anything, read
the rest of this handout completely! Then, when
writing each method, CHECK IT THOROUGHLY,
USING ENOUGH TEST CASES TO BE SURE
THAT IT IS CORRECT! This is the only way to deal
with such a programming task.

Note: a method that returns a BigInt should always
produce a new instance of BigInt. It should NOT
change the BigInts that are input to it. The user should
be able to rely on inputs to functions not being
changed!

Look at the beginning of class BigInt. BASE is the
base that is being used, sign gives the sign of the
integer, and bigint is the unsigned integer itself. Read
the description of these variables carefully. Since each
digit of a number is stored as an int, the BASE is
restricted to Short values so that no overflow can
occur --because we provide multiplication,
BASE*BASE has to be an int.

When testing your work, use base 10 at first, so that
you can see the output nicely. Then try it in smaller
and larger bases.

Make use of method toStringBASE to print results for
yourself. It does not rely on any of the methods that
you are writing.

Method BigInt.toString may not work properly until
you have implemented some of your methods.

WATCH OUT. We spent an hour looking for the
mistake in

if (this.sign = b.sign)

This compiled, even though the = should have been
==. Evaluation of the if condition stores b.sign in
this.sign and then yields the value of this.sign.
Horrible!

Note: Although (most) integers are kept in base
BASE, there will be a need in one place to keep an
integer in a different base. That is why method encode
has a parameter.

The constructors and function encode. We give you
these, so you can have an idea of what the methods
that deal with integers look like. Method encode
implements an algorithm that we have seen on an
assignment. STUDY IT.

1. Method equals. Write (and test) this method.

2. Methods less. Write static method less.We give you
instance method less, so that you have an idea how
signs of integers are treated.

3. Method negate. Write the body of method negate.
Remember, don’t change the BigInt that it (implicitly)
works with; create a new one and fill in its sign and
bigint fields. Also, remember that a BigInt that is 0
must have true for its sign.

4. Static method add. Write static method add, which
adds two unsigned integers (represented as Lists) and
produces the result in a third List. Make use of the
conventional way of adding, as described earlier.

Don’t go on to the next step until you are positive that
add is correct. You can test this method by making it
public (temporarily) and calling it from your method
main with suitable arguments. Be sure to make it
private when you are finished.

To help you out, we have included the invariant for
the first loop of our algorithm, which processes the
two lists that represent the integers until one of them
becomes empty.. You don’t have to use the idea given
by this invariant if you don’t want. But, IF YOU
DON’T USE THIS INVARIANT, DELETE IT!

5. Instance method add. Write instance method add.
Depending on whether the signs of this and b are the
same or different and on which is larger, it will have
to call add(this.bigint, b.bigint), subtract(this.bigint,
b.bigint), or subtract(b.bigint, this.bigint). The calls on
subtract will not work properly because you haven’t
written subtract. So at this point, you can test this
method only on integers with the same sign.

6. Static method subtract. Write static method sub-
tract. As with add, we give an invariant, which you
can use OR DELETE. Note also the last statement;
knowing that you will generally forget to remove
leading zeros from the result, we have done it for you.

7. Instance method subtract. Write instance method
subtract. As with add, whether you call static methods
add or subtract depends on the sign of the operands.

3

Using BigInt We have implemented multiplication
and a simplified version of division:

 /** Store in q the quotient when this is divided by y
 and return the remainder.
 Precondition (1): 0 < y < BASE.
 Precondition (2): this > 0.
 Precondition (3): q is nonnull and a different

 folder from this and y. */
public int division(int y, BigInt q)

This method calculates the quotient and remainder
when this integer is divided by y, but only if y is less
than BASE. Use this method only when you are using
a big enough base. The biggest base you can use is
Short.MAX_VALUE. The above is for your
information only; you don’t need to use it.

(a) Using BigInt. Below is a conventional method for
calculating factorial n. Change it so that it returns
factorial n as a BigInt, instead of an int, and put it in
class BigInt. Its name should be fact, and variables n
and int should be ints; only x should be a BigInt.

 // = factorial n (for 0 <= n)
public static int fact(int n) {

if (n <= 1)
 { return n; }

int x= 2; int i= 2;
// invariant: 2 <= i <= n and x = factorial i
while (i != n) {

 i= i+1;
 x= x*i;

}
return x;

}

After you have tested method fact, use it to find out
the first integer n, call it N, for which fact(n) can not
be represented as a value of type long.This will give
you a feel for when type long is no longer adequate.

How many digits in a BASE does it takes to represent
fact(N)? To find out, run the program to print:

fact(N).numberDigits()

Run it 3 times, once using BASE 2, once using BASE
10, and once using BASE Short.MAX_VALUE, each
time printing the value of the expression show above.

Include the value N and the three lengths in a
comment in the specification of method fact, so we
can see that you have done this task.

(b) Using BigInt. Below is a method to calculate
Fibonnaci(n). Change it so that it returns its result as a
BigInt, instead of an int, and put it in class BigInt. Its
name should be Fib, and variables n and k should be
ints; only b and c should be BigInts.

// = Fibonacci number n (for n>= 0).
// Note:Fib(0) = 0, Fib(1) = 1,
// Fib(n) = Fib(n-1) + Fib(n-1) for n>=2
public static int Fib(int n) {

if (n<=1)
return n;

int b= 0
int c= 1;
int k= 1;
//inv: 1 <= k <= n and c = Fib(k) and b = Fib(k-1)
while (k != n) {

 temp= b+c;
 b= c;
 c= temp;
 k= k+1;
 }
 return c;
}

After you have tested it. use your program to calculate
fib(200).

Include the value fib(200) and the number of digits it
takes to represent it in base Short.MAX_VALUE as a
comment in the specification of method Fib, so we
can see that you have done this task.

What to hand in. Please submit your assignment
electronically, Submit only method BigInt; that’s all
we need. Remember: the comments on methods fact
and Fib have to contain some information. (See a
description of tasks (a) and (b) on this page).

IMPORTANT NOTE. Recognizing that you may
have difficulty with time, only 10 points will be given
for the two subtract methods. Therefore, you can
leave these undone and still get 90/100. Tasks (a) and
(b), presented on this page, do not require subtraction.

