
1

Assignment 6. Developing Loops

Due on Tuesday, 30 October, by midnight (submitted electronically). Note that each question will be graded on
the following basis: Does the initialization make the invariant true? Does the invariant of the loop together with the
falsity of the loop condition imply the result? Does the body make progress toward termination? Does the loop body
maintain the invariant? Also, you methods MUST have specifications and your loops MUST have invariants.

You need execute and check out only the function of Question 1. However, it is in your best interest to check them
all by running test cases.

Quiz on Thursday, 25 October. You will have to
write this checklist from memory. To prove

// {Q}

init;

// {invariant: P; bound function: t}

while (B) S

// {R}

do the following.

1. Prove that P is true initially: {Q} init {P}

2. Upon termination R holds: P and !B imply R

3. Each iteration decreases t.

4. t is really a bound function: P and B imply t > 0.

5. P is invariant: {P and B} S {P}

Remember that a Hoare triple like {Q} init {P} is a
true-false statement with meaning:

Execution of init begun in a state in which Q is
true is guaranteed to terminate with P true.

Quiz on Tuesday, October 30. Memorize and be
able to use the definition of “Big-Oh” notation given
at the bottom of page 160 of Weiss:

Definition. Function t(n) is O(f(n) if there are
positive constants c and n0 such that

t(n) <= c*f(n) for all n >= n0 .

Quiz on Thursday, November 1. Be able to write
algorithms binary search, partition, and selection
sort. Memorize each by (1) memorizing the pre- and
post-conditions, (2) memorizing the invariants, and
(3) practicing developing the loop (with initializa-
tion) using the pre- and post-conditions and the
invariant.

All the information you need is given in the handout
on correctness.

In order to submit your assignment: Get a fresh
copy of file RecursionTest.java and JLiveWindow
from the online handout of assignment 1. Insert into
file RecursionTest.java the 5 methods that you are
asked to write in this exercise. Make sure that
method buttonPressed is set to test the answer to
Question 1!!!! Make a zipped folder that contains

(a) RecursionTest.java

(b) A file that gives your name and netid.

Submit the zipped folder.

Question 1 (a). In the recitation for the week of 22
October, we wrote an algorithm for storing in a
String variable s the decimal representation of a
nonnegative integer. Here, we ask you to write a
function with the following specification:

// = the binary representation of nonnegative n
public static String binaryRep(int n)

A nonnegative integer n is written in decimal as the
String dkdk-1…d1d0 for some k, where:

(1) Each di satisfies 0 <= di < 10

(2) dk, the most significant digit, is > 0.

(3) n = dk*10k + … + d1*101 + d0 *100

The decimal representation of 0 is “”.

In the same way, n is written in binary as the String

bkbk-1…b1b0 for some k, where:

(1) Each bi satisfies 0 <= bi < 2

(2) bk, the most significant bit, is 1.

(3) n = bk*2k + … + b1*21 + b0 *20 .

For example, the binary representation of 6 is the
String “110” because

6 = 1*22 + 1*21 + 0*20 .

Do this:. Change method buttonPressed so that it has
this specification:

// Display in String field 0 the binary rep.
// of the integer in int field 0 and return null.

Check out your method binaryRep thoroughly.

2

Question 1 (b). Answer the following questions. Use
the program of part 1 to help you.

1. What’s the binary representation of 22, of 23, of 24?
For n>0, what’s the binary representation of 2n?

2. What’s the binary representation of 24-1, 25-1, and
26-1? For n>0, what’s the binary representation of 2n-
1?

Place your answers to Question 1(b) in file
RecursionTest.java, as a comment AFTER method
binaryRep.

Question 2. Write a method with this heading:
// = index of first odd value in b[h..k] (k+1 if none)

 public static int firstOdd(int[] b, int h, int k)

The body should be a loop (with initialization), and it
MUST use the following information:

Precondition Q: h <= k+1
Postcondition R: h <= p <= k+1 and

 b[h..p-1] contains only evens and
(either p = k+1 or b[p] is odd)

Bound function: k+1-p
Invariant:b[h..p-1] contains only even values

Question 3. Write a method with this heading:
 // Sort b[h..k]
 public static void selectionsort(int b[], int h, int k)

The body should be a loop (with initialization), and it
MUST use the following information.

Precondition Q: h <= k+1
Postcondition R: b[h..k] is in ascending order
Bound function: p-h
Invariant:

b all even ?

h p k

Question 4. Write a method with this heading:
 // = the integer whose binary rep is b[0..k-1]

 public static int intBinary(int[] b, int k) {

Thus, array segment b[0..k-1] contains the bits of the
binary representation of an integer n. For example, if b =
(0, 0, 1), the integer is 4. The method body should have a
loop, and the loop MUST use the following information --
note the use of two extra variables, p and exp.

Precondition Q: k >= 0,
0 <= b[j] <= 1 for all j in the range 0..k-1

Postcondition R: n is the integer represented by
 b[h..k-1]

Bound function: k-p
Invariant: exp = 2**p and

 n is the integer represented by b[h..p-1]:

Question 5. Write a method with this specification:
 // = gcd(a,b), for a>0, b>0
 public static int gcdloop(int a, int b)

The method body should have a loop (with initialization)
that stores into a variable p the greatest common divisor of
positive integers a and b (which we write as gcd(a,b)). You
must use the following information:

Precondition Q: a > 0 and b > 0
Postcondition R: p = gcd(a,b)
Bound function: p+q
Invariant:gcd(a,b) = gcd(p,q)

Use the following facts:

gcd(x,x) = x (for all x)
gcd(x,y) = gcd(x-y,y) for x > y
gcd(x,y) = gcd(x,y-x) for y > xb <= sorted, >=

h p k

b

 0 p k

n contains the integer represented
by this part, b[0..p-1]

