
09/13/2000 19:14

1

Matthew Morgenstern 1 CS211 Accel/Proj - Sept. 13 & 14, 2000

Kinds of Inheritance
 - examples in Java and JavaScript

Kinds of Inheritance
 - examples in Java and JavaScript

l Object-oriented language based on prototypes:
u No distinction between Classes and object instances

u JavaScript - is now officially called ECMAScript:

– ECMA stands for European Computer Manufacturers Assoctn

l Prototypical object - an object used as a template for
the initial properties of a new object.

l Any object (instance) can be used as the prototype for
another object

u Allows the second object to ‘share’ the first object's properties
and values.

l Ref: http://developer.netscape.com/docs/manuals/communicator/jsobj/index.htm

Matthew Morgenstern 2 CS211 Accel/Proj - Sept. 13 & 14, 2000

Instance / Value Inheritance (not Java)Instance / Value Inheritance (not Java)

8 Object inherits value dynamically from prototype/parent instance
u Specify prototype chain for inheritance of property value and

property definition - Note: “.prototype” :
– Manager..prototype = Employee

- Specifies that Manager inherits from Employee

– Employee.prototype.WorkAddress = value
propagates updated value of Property WorkAddress to Manager

Unless:
u Local property value at Creation Time of object:

– Constructor creates local property (default or inherit current value).
– Manager.WorkAddress = value - creates or updates local copy.

09/13/2000 19:14

2

Matthew Morgenstern 3 CS211 Accel/Proj - Sept. 13 & 14, 2000

Instance / Value Inheritance (not Java) - ExampleInstance / Value Inheritance (not Java) - Example

l Employee1.WorkAddress = “Ithaca”
Employee1.Dept = “CS”

u sets values of properties for Employee1 object instance.

l Manager..prototype = Employee1
u designate Employee1 object as prototype for Manager

u establishes inheritance path: prototype chain

u When you create a new Manager, it ‘inherits’ the WorkAddress

and dept properties and values from that Employee1 object.

u so Manager.WorkAddress has-value ”Ithaca”

l Employee.prototype.WorkAddress = “Cornell”
u dynamic value inheritance from Employee prototype to Manager:

u so Manager.WorkAddress has-value ”Cornell”

Matthew Morgenstern 4 CS211 Accel/Proj - Sept. 13 & 14, 2000

Dynamic Type Specification & Propagation (not Java)Dynamic Type Specification & Propagation (not Java)

l Dynamic Type Specification:
(can exist with or without instance inheritance)

8 An object can specify and add property definitions
- and can do so dynamically even at runtime.

– Employee1.prototype.bldg = “Upson”

u Object (instance) can be created without any prior definitions:
objectName = { property1:value1, property2:value2,...,

 propertyN:valueN }

l Dynamic change propagation of property definitions and
values: (can exist with or without instance inheritance)

u If you add a property to an object that is used as the prototype for
a set of objects, the objects for which it is the prototype also get the
new property and value:

u Employee1.prototype.bldg = “Upson”
causes Manager.bldg to have value “Upson”

09/13/2000 19:14

3

Matthew Morgenstern 5 CS211 Accel/Proj - Sept. 13 & 14, 2000

Other Forms of Inheritance (not Java)Other Forms of Inheritance (not Java)

l Selective Inheritance:

u Once a prototype property inheritance chain is established,

B.prototype = A
the inheritance of properties and values from A to B is
(somewhat) selective in JavaScript:

– only for those properties not defined locally by B.

l Selective Inheritance in general would allow:
(artificial syntax):

u Selective property definition inheritance:
Manager.inherits = [Emp.Dept, Emp.Bldg]

u Selective property value inheritance:
Manager.inherits = [emp1.Dept, emp1.Bldg]

Matthew Morgenstern 6 CS211 Accel/Proj - Sept. 13 & 14, 2000

Comparison of class-based (Java) and prototype-based
(JavaScript) object systems

Comparison of class-based (Java) and prototype-based
(JavaScript) object systems

Class-based (Java) Prototype-based (JavaScript)

Class and instance are distinct entities. All objects are instances.

Define a class with a class definition;
instantiate a class with constructor
methods.

Define and create a set of objects with constructor
functions.

Create a single object with the new
operator. Same.

Construct an object hierarchy by using
class definitions to define subclasses of
existing classes.

Construct an object hierarchy by assigning an object as
the prototype associated with a constructor function.

Inherit properties by following the class
chain. Inherit properties by following the prototype chain.

Class definition specifies all properties
of all instances of a class. No way to
add properties dynamically at runtime.

Constructor function or prototype specifies an initial set
of properties. Can add or remove properties
dynamically to individual objects or to the entire set of
objects.

09/13/2000 19:14

4

Matthew Morgenstern 7 CS211 Accel/Proj - Sept. 13 & 14, 2000

Dimensions for different kinds of
Inheritance

Dimensions for different kinds of
Inheritance

l Time/when:
– Program Construction Time - hard-coded , typical
– Class Declaration / Creation time - parameterized Class defn
– Instance Creation time - properties defined at creation time
– Instance Access time - properties updated at access time

l Inheritance of:
u Property Definition vs
u Value/instance inheritance

l Change Propagation
u Can changes be made and at what stages

u When do changes propagate.

Matthew Morgenstern 8 CS211 Accel/Proj - Sept. 13 & 14, 2000

A Challenge:A Challenge:

l Come up with one or more ways of accomplishing
these capabilities, or similar, in Java:

u IF no way to accomplish, explain why.

u state the limitations / compromises (expected)

u what objective are achieved / supported

l Multiple Inheritance: inherit from 2 or more large

predefined classes

u Are templates enough? Simplifying the “reimplementation” w/in
each class to satisfy the template.

l Optional, may be submitted - next week - extra credit

l General discussion, next week or following week
u You are encouraged to discuss your ideas

