
CS2044 - Advanced Unix Tools & Scripting

Spring 2011

Hussam Abu-Libdeh
slides by David Slater

March 4, 2011

Hussam Abu-Libdeh slides by David Slater CS2044 - Advanced Unix Tools & Scripting

Python

An open source programming language conceived in the late 1980s.
it is both compiled and interpreted (compilation step hidden).

Since Python is interpreted it is slower than C/C++ but is fast
enough for most applications.

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

Why Python?

In Python we can do a variety of things

Work with an interactive interpreter that makes it easy to
experiment and try code

Write object-oriented programming... but you do not need to
use classes for everything like in java

Work with built in modules for text processing and regular
expressions

Automatically convert variable types

Work with scipy and numpy and do scientific computation like
in matlab

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

But most of all...

Python is easy to read as white space is part of the syntax! Instead
of enclosing blocks of code in brackets, we simply indent instead.

Python may be the easiest language to pick up and learn because
although there may not be 10 ways (cough Perl) to do something,
the way you expect to do it works.

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

Data types

int : 3

float: 2.5

str: ’abc’, ”abc”

list: [0,1,2], [0,1,’the’]

tuple: (0,1,2),(0,1,’the’)

dict: {’a’: 1, ’Ohio’: ’Columbus’ 2: ’b’}

strings and tuples cannot be changed once they are created.

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

The interactive interpretor

Lets go play with the interpretor. To start the basic interpretor
type python. If you have ipython installed, type ipython to get
python with syntax highlighting, word completition and more!

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

Becareful with ints

Becareful with ints!

>> 1/2

0

>> 1./2

.5

Integer division truncates... :(

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

Working with strings

"hello"+"world" "helloworld" # concatenation

"hello"*3 "hellohellohello" # reptition

"hello"[0] "h" # indexing

"hello"[-1] "o" # (from end)

"hello"[1:4] "ello" # slicing

len("hello") 5 # size

"hello" < "jello" True # comparison

"e" in "hello" True # search

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

Working with lists

somelist = [1, "abc", "5", 2, [3,5,"wewt"]]

somelist[0]

1

somelist[2]

’5’

somelist[4][2]

’wewt’

somelist[1:3]

[’abc’, ’5’] <---- [a:b] starts at a and

goes up to 1 before b

somelist[:2]

[1,’abc’]

del(somelist[2]) <--- remove an element

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

More on Lists

list.reverse() - reverses a list

list.append(obj) - appends obj to a list

list.sort() - sort a list

list.index(obj) - finds the first occurence of a value in a list

list.pop() - pop o↵ last element

help(list) - get documentation

Everything is an object

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

Working with Dictionaries

d = {’a’: 1, ’b’:2}
d.keys() - returns list of keys

d.values() - returns a list of values

d.items() - returns a list of pairs of keys and values

d.has_key(arg) - is arg a key in d?

d = {"duck" : 3 , "geese" : "are pretty"}

d["duck"]

3

d["duck"] = "i like ducks"

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

On Punctuation

parentheses (): defining tuples, calling funtions, grouping
expressions

t = (’a’,’b’,’c’)
z = func(x,y)
z = 2.*(x+3) + 4./(y-1.)

square brackets []: indexing and slicing (lists, dictionaries,
arrays

element = lst[i]
val = dct[’k’]
y = a[i,j] (numpy array)
sublist = list[i:j]

curly braces {}: dictionary creation
dct = {’a’: ’apple’, ’b’: ’bear’, ’c’: ’cat’}

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

On variables

no need to declare

need to assign

not strongly typed

the variable in interactive mode stores the most recent
output value (good for arithematic)

everything is a ”variable” (functions, classes, modules)

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

Assigment = reference!

When we do
x = y
we are making x reference the object y refers to. So

a = [1, 2, 3]

b = a

a.append(4)

print b

[1, 2, 3, 4]

David Slater dms236 at cornell.edu CS2044 - Advanced Unix Tools

