CS2043 - Unix Tools & Scripting

Cornell University, Spring 20141

Instructor: Bruno Abrahao

February 26, 2014

1
Slides evolved from previous versions by Hussam Abu-Libdeh and David Slater

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Loopy loops!

The while loop

while commandsl; do commands2; done

Executes commands? as long as the last command in commands1 is
successful (i.e. its exit code is 0).

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

While loop example

i=1
while [$i -le 10]
do

echo "$i"
i=$(($i+1))

done

This loop prints all numbers 1 to 10.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Until we meet again...

Until loop

until commandsl ; do commands2 ; done

Executes commands?2 as long as commands1 is unsuccessful (i.e. its
exit code is not 0).

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Until loop example

i=1
until [$i -ge 11]
do

echo i is $i
i=$(($i+1))

done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Reading in input from the user

You can ask the user for input by using the read command

read varname

@ Asks the user for input
o By default stores the input in $SREPLY
@ Can read in multiple variables read x y z

@ -p option allows you to print some text

read -p "How many apples do you have? " apples
How many apples do you have? 5

$ echo $apples

5

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Other uses for read

read can be used to go line by line through a file:

Examples:

cat f.txt | while read LINE ; do echo $LINE ; done

@ Prints the contents of £.txt line by line (read via pipe).
while read LINE ; do echo $LINE ; done < f.txt

@ Prints the contents of f.txt line by line (read via redirection)

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

read script Example

read can be used to go line by line through any other kind of input:

ls *.txt | while read LINE ; do name=$(echo $LINE |\
sed ’s/txt/text/’); mv -v "$LINE" "$(name)" ; done

@ Renames all .txt files in the current directory as .text files.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

The almighty for loop

for loop

for var in 1list ; do
commands

done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

for loop example

for i in 1 2 3 4; do echo $i; done
for i in {1..4}; do echo $i; done

for i in *; do echo $i; done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

for loop example

#! /bin/bash
lcountgood.sh
counts number of lines in a collection of files
i=0
for f in "$@"
do
j=‘wc -1 < $£°
1=$(($1+$1))
done
echo $i

Recall that $@ expands to all arguments individually quoted
("argl” "arg2" etc).

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

for loop example

What happens if we change $@ to $*? Recall that $* expands to
all arguments quoted together ("argl arg2 arg3")

#! /bin/bash
lcountbad.sh
i="o"
for £ in "$x"
do
j=‘wc -1 < $£°¢
i=$(($i+$3))
done
echo $i

This does not work! Lets look at why.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Why we don't like $*

#! /bin/bash
explaingood.sh

count=0

for i in "$@" ; do
@ let count++
@ echo $i

done

echo $count

This simply echos all the files you pass to the script and how many.

$./explaingood.sh *
explainbad.sh
explaingood.sh
lcountright.sh

3

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Why we don't like $*

But if we change to $*
#! /bin/bash
explainbad.sh
count=0
for i in "$x" ; do
@ let count++
@ echo $i
done
echo $count

This simply echos all the files at once and the number 1:

$./explaingood.sh *
explainbad.sh explaingood.sh lcountright.sh
1

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

other for loop syntax

We can also do things like:

for i in $(seq 1 2 20)
do

echo $i

done

= O N 0w

1
13
15
17
19

even more for loop syntax!

C style:

for ((c=1; c<=5; c++))
do

echo $c

done

warning: only in recent bash versions

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

An infinite loop

We can now create infinite for loops if we want

for (C; ;))
do

echo "infinite loop [hit CTRL+C to stopl"

done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

can't catch a break

We can use break to exit for, while and until loops early

for i in someset
do

cmdl
cmd?2

if (disaster-condition)
then
break

fi
cmd3

done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

continue

We can use continue to skip to the next iteration of a for,
while or until loop

for i in some set

do
cmdl
cmd?2
if (i don’t like cmd3-condition)
continue
fi
cmd3
done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

a case of case?

case

case allows you to execute a sequence of if else if statements in a
more concise way:

case expression in

patternl)
statements ;;
pattern2)

statements ;;

esac

Here the patterns are expanded using shell expansion.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Asking your Height Example

$ read -p "What is you size?" type
$ case $type in
tall)
echo "yay tall"
short | petite)
echo "your height is either short or petite"
[[:digit:117)
echo "We do have your number"
*)
echo "I don’t get it : ("
esac
@ the case statement stops the first time a pattern is matched
(unless & after ;;).

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

