
CS2043 - Unix Tools & Scripting
Cornell University, Spring 20141

Instructor: Bruno Abrahao

February 26, 2014

1
Slides evolved from previous versions by Hussam Abu-Libdeh and David Slater

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Loopy loops!

The while loop
while commands1; do commands2; done

Executes commands2 as long as the last command in commands1 is
successful (i.e. its exit code is 0).

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

While loop example

i=1

while [$i -le 10]

do

echo "$i"

i=$(($i+1))

done

This loop prints all numbers 1 to 10.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Until we meet again...

Until loop
until commands1 ; do commands2 ; done

Executes commands2 as long as commands1 is unsuccessful (i.e. its
exit code is not 0).

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Until loop example

i=1

until [$i -ge 11]

do

echo i is $i

i=$(($i+1))

done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Reading in input from the user

You can ask the user for input by using the read command

read

read varname

Asks the user for input

By default stores the input in $REPLY

Can read in multiple variables read x y z

-p option allows you to print some text

Example:

read -p "How many apples do you have? " apples

How many apples do you have? 5

$ echo $apples

5

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Other uses for read

read can be used to go line by line through a file:

Examples:

cat f.txt | while read LINE ; do echo $LINE ; done

Prints the contents of f.txt line by line (read via pipe).

while read LINE ; do echo $LINE ; done < f.txt

Prints the contents of f.txt line by line (read via redirection)

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

read script Example

read can be used to go line by line through any other kind of input:

Examples:

ls *.txt | while read LINE ; do name=$(echo $LINE |\
sed ’s/txt/text/’); mv -v "$LINE" "$(name)" ; done

Renames all .txt files in the current directory as .text files.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

The almighty for loop

for loop
for var in list ; do

commands

done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

for loop example

for i in 1 2 3 4; do echo $i; done

for i in {1..4}; do echo $i; done

for i in *; do echo $i; done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

for loop example

#! /bin/bash

lcountgood.sh

counts number of lines in a collection of files

i=0

for f in "$@"

do

j=‘wc -l < $f‘

i=$(($i+$j))

done

echo $i

Recall that $@ expands to all arguments individually quoted
(”arg1” ”arg2” etc).

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

for loop example

What happens if we change $@ to $*? Recall that $* expands to
all arguments quoted together (”arg1 arg2 arg3”)

#! /bin/bash

lcountbad.sh

i="0"

for f in "$*"

do

j=‘wc -l < $f‘

i=$(($i+$j))

done

echo $i

This does not work! Lets look at why.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Why we don’t like $*

#! /bin/bash

explaingood.sh

count=0

for i in "$@" ; do

let count++

echo $i

done

echo $count

This simply echos all the files you pass to the script and how many.

$./explaingood.sh *

explainbad.sh

explaingood.sh

lcountright.sh

3

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Why we don’t like $*

But if we change to $*
#! /bin/bash

explainbad.sh

count=0

for i in "$*" ; do

let count++

echo $i

done

echo $count

This simply echos all the files at once and the number 1:

$./explaingood.sh *

explainbad.sh explaingood.sh lcountright.sh

1

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

other for loop syntax

We can also do things like:

for i in $(seq 1 2 20)

do

echo $i

done

1

3

5

7

9

11

13

15

17

19
Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

even more for loop syntax!

C style:

for ((c=1; c<=5; c++))

do

echo $c

done

warning: only in recent bash versions

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

An infinite loop

We can now create infinite for loops if we want

for ((; ;))

do

echo "infinite loop [hit CTRL+C to stop]"

done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

can’t catch a break

We can use break to exit for, while and until loops early

for i in someset

do

cmd1

cmd2

if (disaster-condition)

then

break

fi

cmd3

done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

continue

We can use continue to skip to the next iteration of a for,

while or until loop.

for i in some set

do

cmd1

cmd2

if (i don’t like cmd3-condition)

continue

fi

cmd3

done

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

a case of case?

case
case allows you to execute a sequence of if else if statements in a
more concise way:

case expression in

pattern1)

statements ;;

pattern2)

statements ;;

...

esac

Here the patterns are expanded using shell expansion.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Asking your Height Example

$ read -p "What is you size?" type

$ case $type in

tall)

echo "yay tall"

;;

short | petite)

echo "your height is either short or petite"

;;

[[:digit:]]?)

echo "We do have your number"

;;

*)

echo "I don’t get it :("

;;

esac

the case statement stops the first time a pattern is matched
(unless & after ;;).
the case *) is a catchall for whatever did not match.Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

