
CS2043 - Unix Tools & Scripting
Cornell University, Spring 20141

Instructor: Bruno Abrahao

February 24, 2014

1
Slides evolved from previous versions by Hussam Abu-Libdeh and David Slater

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

A note on awk

for (item in array)

The order in which items are returned is arbitrary.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Recap: Passing arguments to scripts

When we pass arguments to a bash script, we can access them in a
very simple way:

$1, $2, ... $10, $11 : are the values of the first, second
etc arguments

$0 : The name of the script

$# : The number of arguments

$* : All the arguments, ”$*” expands to ”$1 $2 ... $n”,

$@ : All the arguments, ”$@” expands to ”$1” ”$2” ... ”$n”

You almost always want to use $@

$? : Exit code of the last program executed

$$: current process id.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

You have the power!

We now have a variety of UNIX utilities at our disposal and it is
time to learn about

scripting!

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Scripting 101

Definition:

A script is very similar to a program, although it is usually much
simpler to write and it is executed from source code (or byte code)
via an interpreter. Shell scripts are scripts designed to run within a
command shell like bash.

Scripts are written in a scripting language, like perl, ruby, python,
sed or awk. They are then run using an interpreter. In our case,
the scripting language and the interpreter are both bash.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

If conditionals

If statements are structured just as you would expect:

if cmd1

then

cmd2

cmd3

elif cmd4

then

cmd5

else

cmd6

fi

Each conditional statement evaluates as true if the cmd

executes successfully (returns an exit code of 0)

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Putting it on one line

Sometimes we might want to type a multiline command into the
shell, we can do this by hitting enter for each line, or by using
semicolons to tell the shell to start new lines:

Example:

if [testexpr] ; then command1 ; command2 ; fi

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Exercise

Let’s write a script to send us our weekly tasks (hw2, problem 2),
which doesn’t send us a blank e-mail on weekends.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

A simple script

textsearch.sh

#! /bin/bash

This script searches a file for some text then

tells the user if it is found or not.

If it is not found, the text is appended

if grep "$1" $2 > /dev/null

then

echo "$1 found in file $2"

else

echo "$1 not found in file $2, appending."

echo $1 >> $2

fi

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

test expressions

We would not get very far if all we could do was test with exit
codes. Fortunately bash has a special set of commands of the form
[testexp] that perform the test testexp. First to compare
two numbers:

n1 -eq n2 : tests if n1 = n2

n1 -ne n2 : tests if n1 6= n2

n1 -lt n2 : tests if n1 < n2

n1 -le n2 : tests if n1 ≤ n2

n1 -gt n2 : tests if n1 > n2

n1 -ge n2 : tests if n1 ≥ n2

If either n1 or n2 is not a number, the test fails.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Test Expressions

We can use test expressions in two ways:

test EXPRESSION

[EXPRESSION]

Either of these commands returns an exit status of 0 if the
condition is true, or 1 if it is false.

Use man test to learn more about testing expressions

Note: Remember you can check the exit status of the last program
using the $? variable.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Example

#! /bin/bash

Searches a file for two strings and prints which

#is more frequent

Usage: ./ifeq.sh <file> string1 string2

arg=‘grep $2 $1 | wc -l‘

arg2=‘grep $3 $1 | wc -l‘

if [$arg -lt $arg2]

then

echo "$3 is more frequent"

elif [$arg -eq $arg2]

then

echo "Equally frequent"

else

echo "$2 is more frequent"

fi

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

string comparison

To perform tests on strings use

s1 == s2 : s1 and s2 are identical

s1 != s2 : s1 and s2 are different

s1 : s1 is not the null string

Make sure you leave spaces! s1==s2 will fail!

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Expansion

When using testexp variable substitution is performed, but no
matching is perform.

If x is the null string, what will [$x != monster] return?

It will return an error, because $x is expanded to the null string
and the test becomes [!= monster] .

To make sure there are no errors, place your variables inside double
quotes. Then
[$x != monster] is expanded to ["" != monster] which
returns true.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Expansion

When using testexp variable substitution is performed, but no
matching is perform.

If x is the null string, what will [$x != monster] return?

It will return an error, because $x is expanded to the null string
and the test becomes [!= monster] .

To make sure there are no errors, place your variables inside double
quotes. Then
[$x != monster] is expanded to ["" != monster] which
returns true.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

path testing

If path is a string indicating a path, we can test if it is a valid
path, the type of file it represents and the type of permissions
associated with it:

-e path : tests if path exists

-f path : tests if path is a file

-d path : tests if path is a directory

-r path : tests if you have permission to read the file

-w path : tests if you have write permission

-x path : tests if you have execute permission

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

”A long time ago in a galaxy far, far away... we had hw1!”
Let’s understand how it works!

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

More on testing

You can combine tests:
if [testexp1 -a testexp2]

then

cmd

fi

-a : and

-o : or

! testexp1 : not

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

A note about debugging

To debug your code, invoke the script with the -x option. You will
then see all the commands successfully executed:

$ bash -x ifeq.sh Frankenstein.txt monster the

++ grep monster Frankenstein.txt

++ wc -l

+ arg=33

++ grep the Frankenstein.xt

++ wc -l

+ arg2=3850

+’[’ 33 -lt 3850 ’]’

+ echo ’the is more frequent’

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Testing arguments

We can now begin to ensure our scripts get the input we want:

if [-f $1]

then

Perform the action you want

else

echo "This script needs a file as its input

dummy!"

fi

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Arithmetic

A little arithmetic can be useful and BASH can perform all the
standard operators

Arithmetic

a++, a– : Post-increment/decrement

++a, –a : Pre-increment/decrement

a+b, a-b : Addition/subtraction

a*b, a/b : Multiplication/division

a%b : Modulu

a**b : Exponential

a>b, a<b : Greater than, less than

a==b, a!=b : Equality/inequality

=, +=, -= : Assignments

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Using Arithmetic Expressions

We have already seen one way to do arithmetic:

Example:

echo $((2+5))

7

We can also use it as part of a larger command:

The ”Let” Built-In

VAR1=2

let VAR2=$VAR1+15

let VAR2++

echo $VAR2

18

let evaluates all expressions following the equal sign

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

The Difference

all characters between the ((and)) are treated as quoted (no
shell expansion)

The let statement requires there be no spaces anywhere (so
need to quote)

Both work only with integers, for real numbers use bc.

Example:

let "i=i + 1"

i=$(($i + 1))

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

