
CS2043 - Unix Tools & Scripting
Cornell University, Spring 20141

Instructor: Bruno Abrahao

February 21, 2014

1
Slides evolved from previous versions by Hussam Abu-Libdeh and David Slater

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Announcement

HW 4 is out. Due Friday, February 28, 2014 at 11:59PM.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Wrapping up AWK

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Split

n = split(string, array, separator)

Splits fields of string separated by separator and places
them into array.

n is the resulting number of fields

default separator is whitespace

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Fun

Let’s reverse the order of a list of names for all groups in
restaurants.txt !

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Fake Multidimensional Arrays!

array[key1, key2, ...]

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

This is not what AWK is doing

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

This is not what AWK is doing either

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Fake Multidimensional Arrays!

array[3, 6]

Multidimensional subscripts are individual strings
concatenated.

”3” and ”6” in the example are concatenated together
separated by the value of the system variable SUBSEP

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Tests

if ((i, j) in array)

This tests whether the key i SUBSEP j exists in the array.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

That makes life a little harder!

for (item in array)

Each item has the form i SUBSEP j

You must use split() to extract individual subscript
components.

n= split(item, subscr, SUBSEP)

subscr[1] # first component

subscr[2] # second component

...

subscr[n] # n-th component

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Length of an Array

awk ’BEGIN {A= "Ithaca is Gorges";print

length(A)}’

prints ”16”

awk ’BEGIN {split("Ithaca is Gorges",A);print

length(A)}’

prints ”3”

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Full-fledged shell scripting preliminaries

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Scripting

Next week we will discuss bash scripting. Before we begin, will
discuss a few preliminaries.

Agenda:

Shell variables

Shell expansion

Quotes in bash

Running commands sequentially & exit codes

Passing arguments to scripts

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Variables

To get anything done we need variables.

To read the values in variables, precede their names by a
dollar sign ($).

We can print the contents of any variable using the echo

command

Two types of variables: Local and Environment.

Example:

echo $SHELL

/bin/bash

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Local Variables

Local variables exist only in the current shell:

Example:

∼$ x=3

∼$ echo $x

3

Note: Bash is picky! There cannot be a space after the x nor
before the 3!

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Environment Variables

Used by the system to define aspects of operation.

The Shell passes a copy of environment variables to its child
processes

Every command that is launched from the shell becomes its
child.
If you kill the parent, all its children will die.
There is a way to decouple a process from the shell (more on
this later).

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Environment Variables

Examples:

$SHELL - which shell will be used by default
$PATH - a list of directories to search for binaries
$HOSTNAME - the hostname of the machine
$HOME - current user’s home directory

To get a list of all current environment variables type env

New Environment Variable:

To set a new environment variable use export

∼$ export X=3

∼$ echo $X

3

Again: NO spaces around the = sign.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

A Word About the Difference

Environment variables are passed as copies across shell invocations
while local variables are not:

Local Variable:
∼$ x=3

∼$ echo $x

3

∼$ bash

∼$ echo $x

∼$

Environment Variable:
∼$ export x=myvalue

∼$ echo $x

myvalue

∼$ bash

∼$ echo $x

myvalue

∼$

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Environment Variables Again...

If the environment variable is changed in the new shell it is not
changed for the old shell (caller)

Example:

∼$ export x=value1

∼$ bash

∼$ echo $x

value1

∼$ export x=value2

∼$ exit

∼$ echo $x

value1

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Listing and Removing Variables

env - displays all environment variables

set - displays all shell/local variables

unset name - remove a shell variable

unsetenv name - remove an environment variable

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Environment Variables Example - Modifying your Prompt

The environment variable $PS1 stores your default prompt. You
can modify this variable to spruce up your prompt if you like:

Example

First echo $PS1 to see its current value
\s-\v\$ (default)

It consists mostly of backslash-escaped special characters, like \s

(name of shell) and \v (version of bash). There are a whole bunch
of options, which can be found at
http://www.gnu.org/software/bash/manual/bashref.html#Printing-a-Prompt

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

http://www.gnu.org/software/bash/manual/bashref.html#Printing-a-Prompt

Environment Variables Example - Modifying your Prompt

Once you have a prompt you like, set your $PS1 variable

Define your prompt

∼$ export PS1="New Prompt String"

Type this line at the command prompt to temporarily change
your prompt (good for testing)

Add this line to ~/.bashrc or ~/.bash_profiles to make
the change permanent.

Note: Parentheses must be used to invoke the \ characters.

Examples

PS1="\u \w \t_" ⇒ abrahao ~ 12:12:12_

PS1="\W \j \d\:" ⇒ ~ 0 Oct 02:

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Environment Variables Example - Where is my program?

The environment variable $PATH lists the directories to search for
binaries

Example

echo $PATH

/Users/abrahao/bin:/usr/bin:

/bin:/usr/sbin:/sbin:/usr/local/bin

Where is my program?

If it’s in the path, use the command which

Else, use locate

The database locate uses needs to be updated regularly by the
super user.

Linux: updatedb

Mac OS X /usr/libexec/locate.updatedb

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Shell Expansions

The shell interprets $ in a special way.

If var is a variable, then $var is the value stored in the
variable var.

If cmd is a command, then $(cmd) is translated to the result
of the command cmd. (Same as backticks)

Example

∼$ echo $USER

abrahao

∼$ echo $(pwd)

/home/abrahao

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Arithmetic Expansion

The shell will expand arithmetic expressions that are encased in
$((expression))

Examples

∼$ echo $((2+3))

5

∼$ echo $((2 < 3))

1

∼$ echo $((x++))

3

And many more.
Note: the post-increment by 1 operation (++) only works on
variables

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Quotes

3 different types of quotes to enclose strings, and they have
different meanings:

Single quotes (’): preserves the literal value of each character.
A single quote may not occur between single quotes, even
when preceded by a backslash.

Double quotes (“): preserves the literal value of all characters
within the quotes, with the exception of $ ’ \ !

Back quotes (`): Executes the command within the quotes.
Like $().

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Quotes

Example

∼$ echo "$USER owes me $ 1.00"

abrahao owes me $ 1.00

∼$ echo ’$USER owes me $ 1.00’

$USER owes me $ 1.00

∼$ echo "I am $USER and today is `date`"

I am abrahao and today is Wed Feb 11 16:23:30 EST 2009

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Running Commands Sequentially

The && Operator

<command1> && <command2>

command2 executes only if command1 executes successfully

The ; Operator

<command1> ; <command2>

Immediately after command1 completes, execute command2

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Examples

Example:

mkdir photos && mv *.jpg photos/

Creates a directory and moves all jpegs into it

Example: hello.sh

#! /bin/bash

STRING="Hello again, world!"

echo $STRING

Set your permissions and run:
chmod u+x hello2.sh && ./hello2.sh

Hello again, world!

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Exit Codes

The command after a && only executes if the first command is
successful, so how does the Shell know?

When a command exits it always sends the shell an exit code
(number between 0 and 255)

The exit code is stored in the variable $?

An exit code of 0 means the command succeeded

The man page for each command tells you precisely what exit
codes can be returned

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Exit Codes

Example:

∼$ ls ∼/Documents/cs2043
2003 2004 2007 2008 2009

∼$ echo $?

0

Example:

∼$ grep ’Gorges’ ∼/Documents/Ithaca.txt
Ithaca is Gorges!

∼$ echo $?

0

Example:

∼$ grep ’George’ ∼/Documents/Ithaca.txt
∼$ echo $?

1

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Script Comments

Scripts begin with a shebang (#!), followed by the full path of the
interpreter we’d like to use: e.g., /bin/bash

Any line that begins with # (except the shebang) is a
comment

Comments are ignored during execution - they serve only to
make your code more readable.

Remember: you know what your code does today, but you won’t
quite remember next month.
Remember 2: Other readers have limited knowledge of what your
script is supposed to do.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Passing arguments to scripts

When we pass arguments to a bash script, we can access them in a
very simple way:

$1, $2, ... $10, $11 : are the values of the first, second
etc arguments

$0 : The name of the script

$# : The number of arguments

$* : All the arguments, ”$*” expands to ”$1 $2 ... $n”,

$@ : All the arguments, ”$@” expands to ”$1” ”$2” ... ”$n”

You almost always want to use $@

$? : Exit code of the last program executed

$$: current process id.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Simple Example

multi.sh

#! /bin/bash/

echo $(($1 * $2))

Usage: ./multi.sh 5 10

Returns first argument multiplied by second argument

uptolow.sh

#! /bin/bash

tr ’[A-Z]’ ’[a-z]’ < $1 > $2

Usage: ./uptolow.sh file filelow

translates all upper case letters in file to lowercase and
writes to filelow

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

