
CS2043 - Unix Tools & Scripting
Cornell University, Spring 20141

Instructor: Bruno Abrahao

February 12, 2014

1
Slides evolved from previous versions by Hussam Abu-Libdeh and David Slater

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

A note on sed

sed ’s/regexp/string/ file’

process line by line in main memory

sends output to stdout

doesn’t change file

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

A note on sed

Don’t ever do this:

sed ’s/regexp/string/ file’ > file

file is going to be replaced by a new empty file before sed

starts processing it.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

A note on sed

sed ’s/regexp/string/’ file > outfile

process line by line in main memory

sends output to outfile

doesn’t change file

check outfile for the desired output

then, move
$ mv outfile file

How do you check the output?

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

A note on sed

sed ’s/regexp/string/’ file > outfile

process line by line in main memory

sends output to outfile

doesn’t change file

check outfile for the desired output

then, move
$ mv outfile file

How do you check the output?

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

diff

diff

diff file1 file2

Output

n{c,a,d}m: one of line change (c), addition (a), deletion (d)
occurred in line n of file1 compared to line m of file2.

<: means that this line is exclusive of file1

>: means that this line is exclusive of file2

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

AWK introduction

AWK is a programming language designed for processing text-based
data

allows us to easily operate on fields rather than full lines

works in a pattern-action matter, like sed

supports numerical types (and operations) and control flow
(if-else statements)

extensively uses string types and associative arrays

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

AWK is not awkward!

Created at Bell Labs in the 1970s

by Alfred Aho, Peter Weinberger, and Brian Kernighan

An ancestor of Perl

and a cousin of sed :-P

Very powerful

actually Turing Complete

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Do you grok gawk?

gawk

gawk is the GNU implementation of the AWK programming
language. On BSD/OS X the command is called awk.

AWK allows us to setup filters to handle text as easily as
numbers (and much more)

The basic structure of a awk program is

pattern1 { commands }
pattern2 { commands }
. . .

patterns can be regular expressions! Gawk goes line by line,
checking each pattern one by one and if its found, it performs
the command.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Why gawk and not sed

convenient numerical processing

variables and control flow in the actions

convenient way of accessing fields within lines

flexible printing

built-in arithmetic and string functions

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Simple Examples

gawk ’/[Mm]onster/ {print}’ Frankenstein.txt

gawk ’/[Mm]onster/’ Frankenstein.txt

gawk ’/[Mm]onster/ {print $0}’ Frankenstein.txt

All print lines of Frankenstein containing the word Monster or
monster.

If you do not specify an action, gawk will default to printing
the line.

$0 refers to the whole line.

gawk understands extended regular expressions, so we do not
need to escape +, ? etc

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Begin and End

Gawk allows blocks of code to be executed only once, at the
beginning or at the end.

gawk ’BEGIN {print "Starting search"}

/[Mm]onster/ { count++}

END {print "Found " count " monsters in the book!}
’ Frankenstein.txt

gawk does not require variables to be initialized

integer variables automatically initialized to 0, strings to ””.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

gawk gawk gawk

If no pattern is given, the code is executed for every line

gawk ’ {print $3 }’ infile

Prints the third field/word on every line.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Simulation

Let’s implement wc -l in awk!

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

gawk and input fields

The real power of gawk is its ability to automatically separate each
input line into fields, each referred to by a number.

gawk ’print $N’ file

$0 refers to the whole line

$1, $2, ... $9, $(10) ... refer to each field

The default Field Separator (FS) is white space.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

The field separator

FS - The field separator

Default is ” ”

gawk ’BEGIN { FS = ","} {print $2 }’ infile

gawk -F: also allows us to set the field separator

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Statistics

Let’s compute some CS 2043 statistics based on your survey
responses using awk!

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Matching and gawk

gawk can match any of the following pattern types:

/regular expression/

relational expression

exp && exp

exp || exp

condition ? statement1 : statement2 - if condition, then
statement1, else statement2

! exp

and more...

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Relational Operators 1/2

gawk ’BEGIN { FS = ":"}
toupper($1) ∼ /FOO/ {print $2 } ’ infile

toupper(), tolower() - built in functions

∼ - gawk matching relational operator

!∼ - gawk not matching operator

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Demo

Lottery example

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Other gawk functions

exp(x) : exponential of x

rand() : produces a random number between 0 and 1

length(x) : returns the length of x

log(x) : returns the log of x

sin(x) : returns the sin of x

int(x) : returns the integer part of x

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Relational Operators 2/2

gawk ’($1 > .5){print $2 }’ infile

Other relational operators

<, <=, >, >=, !=, ==

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

gawk and input fields

The real power of gawk is its ability to automatically separate each
input line into fields, each referred to by a number.

gawk ’

BEGIN {print "Beginning operation"; myval = 0}
/debt/ { myval -= $1}
/asset/ { myval += $1}
END { print myval}’ infile

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

What type of code can I use in gawk?

gawk coding is very similar to programming in c

for(i = ini; i <= end; increment i) {code}
if (condition) {code}

(In both cases the { } can be removed where only one command is
executed)

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Other gawk variables

NF - # of fields in the current line

NR - # of lines read so far

gawk ’{for (i=1;i<=NF;i++) print $i }’ infile

Prints all words in a file

You cannot change NF or NR.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

Next time

More powerful features of AWK. Stay tuned!

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting

