
CS2043 - Unix Tools & Scripting
Cornell University, Spring 20141

Instructor: Bruno Abrahao

January 24, 2014

1
Slides evolved from previous versions by Hussam Abu-Libdeh and David Slater

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Last Time

We had a brief discussion On The Origin of Species *nix systems

Today

We roll our sleeves and get our hands dirty

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Notation

Commands will be shown on slides using typewriter typeface.

Introducing new commands

New commands will be introduced in block boxes like this one. A
summary synopsis of calling the command will be shown listing the
command name and potential optional arguments/flags.

SomeCommand [opt1] [opt2]

To execute a command, just type its name into the shell and press
return/enter.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



The Unix File System

UNIX: single global “root” directory / (regardless of how
many disks/volumes you have)

Files and directories are case sensitive
hello.txt != Hello.txt

Directories are separated by / instead of \ in windows

UNIX: /home/user1/Documents/cs2043/2014/Lecture2/
Windows: D:\Documents\cs2043\2014\Lecture2\

“Hidden” files begin with “.”: .gimp

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Unix Filesystem Hierarchy

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



What’s Where?

/dev: Hardware devices can be accessed here - usually you
dont mess with this stuff.

/lib: Stores libraries, along with /usr/lib, /usr/local/lib, etc.

/mnt: Frequently used to mount disk drives

/usr: Mostly user-installed programs and their related files

/etc: System-wide settings

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



What’s Where: Programs Edition

Programs are usually installed in one of the “binaries” directories:

/bin: System programs

/usr/bin: Most user programs

/usr/local/bin: A few other user programs

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Ok, but where are my stuff?

Your files can be found in your home directory, usually located at

/home/username

Your home directory can also be access using the special character
∼

Which is all well and good, but how do we move around?

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Where am I now?

Many shells default to using the current path in their prompt. If
not...

Print Working Directory

pwd

Prints the full path of the current directory

Handy when you get lost

Important variable for scripts

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Whats here?

Before we try going somewhere else, lets see what is in the current
directory.

The list command

ls [flags] [file]

Lists directory contents (including subdirectories)

Works like the dir command from DOS

Options

-l : lists detailed file/directory information (we’ll learn more
about flags later).
-a : lists hidden files

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Ok lets go!

change directory

cd [directory name]

changes directory to [directory name]

If not given a destination defaults to the user’s home directory

takes both absolute (cd /home/user1/cs2043) and relative
(cd cs2043) paths.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Its all Relative... except when its not

Absolute path

location of a file or folder starting at /

Relative Path

location of a file or folder beginning at the current directory

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Relative Path Shortcuts

Shortcuts:

∼ - current user’s home directory

. - the current directory (is useful I promise!)

.. - the parent directory of the current directory

Example

If we start in /usr/local/src, then

cd ⇒ /home/hussam

cd . ⇒ /usr/local/src

cd .. ⇒ /usr/local

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Creating A New File

The easiest way to create an empty file is touch

Using touch

touch [flags] <file>

Adjusts the timestamp of the specified file

With no flags uses the current date/time

If the file does not exist, touch creates it

File extensions (.exe, .txt, etc) often don’t matter in UNIX. Using
touch to create a file results in a blank plain-text file (so you don’t
need to add .txt to it).

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Creating a New Directory

Simple and to the point

Make Directory

mkdir [flags] <directory>

Makes a new directory with the specified names

Can use relative/absolute paths to make directories outside
the current directory.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



File Deletion

Unlike in window, once you delete a file (from the command line)
there is no easy way to recover the file.

Remove File

rm [flags] <filename>

Removes the file called <filename>

Using wildcards (more on this later) you can
remove multiple files

rm * - removes every file in the current directory

rm *.jpg - removes every .jpg file in the current

directory

rm -i filename - prompt before deletion

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Deleting Directories

By default, rm cannot remove directories. Instead we use...

Remove Directory

rmdir [flags] <directory>

Removes a empty directory

Throws an error if the directory is not empty.

To delete a directory and all its subdirectories, we pass rm the flag
-r (for recursive)

rm -r /home/user1/oldstuff

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Copy That!

Copy

cp [flags] <file> <destination>

Copies a file from one location to another

To copy multiple files you can use wildcards (such as *)

To copy a complete directory use cp -r <src> <dest>

Example:

cp *.mp3 /Music/ - copies all .mp3 files from the current
directory to /home/<username>/Music/

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Move it!

Unlike cp, the move command automatically recurses for
directories

Move

mv [flags] <source> <destination>

Moves a file or directory from one place to another

Also used for renaming, just move from <oldname> to

<newname>

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Quick Review

ls - list directory contents

cd - change directory

pwd - print working directory

rm - remove file

rmdir remove directory

cp - copy file

mv - move file

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



A Word about Flags/Options

Most commands take flags (also called options). These usually
come before any targets and begin with a -.

One Option

ls -l

Two Options

ls -l -a

Two Options

ls -la

Applies options left to right

rm -fi file ⇒ prompts
rm -if file ⇒ does not prompt

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Your new best friend:

How do I know how some fancy new command works?

The manual command

man <command_name>

Brings up the manual page (manpage) for the selected
command

Unlike Web search, manpages are system-specific

Gives a pretty comprehensive list of all possible
options/parameters

Use /<keyword> to perform a keyword search in a manpage

The n-key jumps to successive search results

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Beware...

There are subtle differences with options on different systems.
For instance ls -B

BSD/OSX - Force printing of non-printable characters in file
names as \xxx, where xxx is the numeric value of the
character in octal

Ubuntu - do not list implied entries ending with ∼
This is why man is your best friend and the Web is your second
best friend!

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Users, Groups, i.e. Let’s All Play Nice

Unix was designed to allow multiple people to use the same
machine at once. This raises some security issues - How do we keep
our coworkers from reading our email, browsing our documents and
changing/deleting programs and files while I’m using them?

Access to files depends on the users account

All accounts are presided over by the Superuser, or ”root”
account

Each user has absolute control over any files he/she owns,
which can only be superseded by root.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Group Theory ... (ok, not really)

Files can also be assigned to groups of users, allowing reading,
modifications and/or execution to be restricted to a subset of users

Example:

If each member of this class had an account on the same server, it
would be wise to keep your assignments private (user based).
However, if we had a class wiki hosted on the server, it would be
advantageous to allow everyone in the class to edit it, but no one
outside of the class.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



File Ownership

Each file is assigned to a single user and a single group
(usually written user:group).

For example Alice’s files belong to alice:users, and roots
files belong to root:root.

Needs root privilege to change file ownership — a regular user
can’t take ownership of someone else’s files and can’t pass
ownership of their files to another user or a group they don’t
belong to.

To see what groups you belong to type groups.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Discovering Permissions

We can use ls -l to tell us about ownership and permissions of
files

ls -l - lists files and directories in the long format

Example
-rw-r--r-- 1 hussam users 3775 2009-08-17 15:52 index.html

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Cracking the Format

-rwxrwxrwx

User’s Permissions

Group’s Permissions

Other’s permissions

R = Read, W = Write, X = Execute

Directory Permissions begin with a d instead of a -

What permissions would -rw-rw-r-- mean?

User and group can read and write the file while everyone else can
just read it

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Cracking the Format

-rwxrwxrwx

User’s Permissions

Group’s Permissions

Other’s permissions

R = Read, W = Write, X = Execute

Directory Permissions begin with a d instead of a -

What permissions would -rw-rw-r-- mean?

User and group can read and write the file while everyone else can
just read it

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Changing Permissions

Normal users cannot change system files and cannot globally install
programs. This is a major advantage of unix as it greatly restricts
what malicious code can do. With that in mind, how do you
change the permissions of your own files?

Change Mode

chmod <mode> <file>

Changes file/directory permissions based on <mode>

The format of <mode> is a combination of 3 fields:

Who is affected - a combination of u, g, o, or a (all)
Whether adding or removing permissions - + or -
Which permissions are being added/removed -any combination
of r, w, x.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Changing Permissions

Examples

chmod ug+rx myfile : adds read and execute permissions
for user and group.

chmod a-r myfile : remove read access for everyone

chmod ugo-rwx myfile : removes all permissions from
myfile

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Changing Permissions - Convenience

Think of r, w, and x as binary variables:

1 ON

0 OFF

r × 22 + w × 21 + x × 20

Examples

chmod 755 : rwxr-xr-x

chmod 600 : rw-------

chmod 777 : rwxrwxrwx

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Changing Ownership

If you want to change the group a file you have ownership of
belongs to you use the following

Change Group

chgrp group <target>

Changes the group ownership of file <target>

If you have root access and you want to change who owns a file
you use

Change Ownership

chown user:group <target>

changes ownership of file <target>

group is optional

use the flag ”-R” to do a recursive change to a directory and
the files within

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Recursion

Most commands (for which it makes sense) have a recursive option.
This is used to act on every file in every subdirectory of the target

Usually -r or -R option (check manpage)

Example:

chmod -R o-w ∼/Documents/
removes write privileges for other uses for every file and every
directory in ∼/Documents/

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Types of files

There are two main types of files. The first is plain text files.

Text Files

Plain text files are written in a human-readable format. They are
frequently used for

Documentation

Application settings

Source code

Logs

Anything someone might want to read via a terminal

Like something you would create in notepad

Editable using many existing editors

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Binary Files

Binaries

Binary files are written in machine code.

Not human readable (at least without using hex editors)

Commonly used for executables, libraries, media files, zips,
pdfs, etc

To create need some sort of binary-outputting program

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Dealing with plain text

The shell is designed to allow the user to interact in powerful ways
with plain text files. Before we can get to the fun stuff lets cover
the basics:

Nano

nano filename

Opens filename for editing

In terminal editor

Since you (most likely) will be sshing into UNIX machines,
this editor will do fine for everything we do in this course

Shortcuts for saving, exiting all begin with CTRL.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Reading Files

Often we only want to see what is in a file without opening it for
editing.

Print a file to the screen

cat <filename>

Prints the contents of the file to the terminal window

cat <filename1> <filename2>

Prints the first file then the second which is what it is really for

More

more <filename>

allows you to scroll through the file 1 page at a time

Less

less <filename>

Lets you scroll up and down by pages or lines

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Beginning and End

Sometimes you only want to see the beginning of a file (maybe
read a header) or the end of a file (see the last few lines of a log).

Head and Tail

head -[numlines] <filename>

tail -[numlines] <filename>

Prints the first/last numlines of the file

Default is 10 lines

Example

tail /var/log/Xorg.0.log

Prints the last ten lines of the log file.

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Printing to the terminal

We have already seen a variety of ways to print text to the screen.
If we just want to print a certain string, we use

Echo echo... echo...

echo <text_string>

Prints the input string to the standard output (the terminal)

echo This is a string

echo ’This is a string’

echo "This is a string"

all print the same thing

We will see why we talk about these three cases later

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting



Later in the course...

More to come:

Shortcuts, tips, and tricks

Useful everyday commands

Piping, input/output redirection

And Much more!

Instructor: Bruno Abrahao CS2043 - Unix Tools & Scripting


