
Topics: One simple approach to the problem of learning a translation dictionary; this approach illustrates a general method for learning when hidden structure is involved, and echoes an approach we've considered in a different context earlier in the course.

I. Example translation pair

Un program a été mis en application vs. And a program has been implemented

II. Example alignments Here is a graphical depiction of two out of the 120 possible alignments¹ for the sentence pair "*la maison bleue est bleue* vs. *the blue house is blue*", where the French sentence is the source.

Formally, we would denote [A1] by $(1 \leftrightarrow 1, 2 \leftrightarrow 3, 3 \leftrightarrow 2, 4 \leftrightarrow 4, 5 \leftrightarrow 5)$.

III. Notation

- For a sentence pair p, let Aligns(p) be the set of all possible alignments of the two sentences in p, and let NumAligns(p) be the size of this set.
- Let $freq(s \leftrightarrow t, A)$ be the number of times we have the source word s "matched" to the target word t in alignment A. In our example above, we have $freq(bleue \leftrightarrow blue, [A1]) = 2$.

¹There are only 120 because we only consider "one-to-one and onto" alignments.

IV. An iterative learning algorithm for MT Inspired by IBM's Candide system from the 80s and 90s.

1. *Initialization:* For every sentence pair p, for every alignment A of p, set $\mathrm{Awt}^{(0)}(A) = 1/(\mathrm{NumAligns}(p))$.

Let i be increasing from 1 on, until the translation weights "converge":

- 2. *Compute temporary translation weights*:
 - For every source/target word pair (s, t), set TempTr $(s \to t)$ to $\sum_A \text{freq}(s \leftrightarrow t, A) \text{Awt}^{(i-1)}(A)$.
- 3. *Get the translation weights by sum-normalizing the temporary ones:*

For each source word
$$s$$
, compute $\operatorname{norm}_s = \sum_{t'} \operatorname{TempTr}(s \to t')$; then, set each $\operatorname{Tr}^{(i)}(s \to t)$ to $\operatorname{TempTr}(s \to t)/\operatorname{norm}_s$.

- 4. Compute temporary alignment weights: For every alignment $A = (1 \leftrightarrow a(1); 2 \leftrightarrow a(2); \cdots; \ell \leftrightarrow a(\ell))$, set $\operatorname{TempAwt}(A)$ to $\operatorname{Tr}^{(i)}(s_1 \to t_{a(1)}) \times \operatorname{Tr}^{(i)}(s_2 \to t_{a(2)}) \cdots \times \operatorname{Tr}^{(i)}(s_\ell \to t_{a(\ell)})$
- 5. Get the alignment weights by sum-normalizing the temporary ones: For each pair p, compute $\operatorname{norm}_p = \sum_{A' \in \operatorname{Aligns}(p)} \operatorname{TempAwt}(A')$; then, for every A in $\operatorname{Aligns}(p)$, set $\operatorname{Awt}^{(i)}(A)$ to $\operatorname{TempAwt}(A)/\operatorname{norm}_p$.

V. Example² partial execution

Suppose we have two sentence pairs, $p_1 =$ "chat bleu vs. blue cat" and $p_2 =$ "chat vs. cat". This yields three alignments:

$$A_1 = (1 \leftrightarrow 1; 2 \leftrightarrow 2)$$
 (so *chat* aligned to *blue* in p_1)
 $A'_1 = (1 \leftrightarrow 2; 2 \leftrightarrow 1)$ (so *chat* aligned to *cat* in p_1)
 $A_2 = (1 \leftrightarrow 1)$ (only one possible choice)

		Alignment weights			Translation weights				
		A_1	A'_1	A_2	$chat \rightarrow blue$	$chat \rightarrow cat$	$bleu \rightarrow blue$	$bleu \rightarrow cat$	
a.	Init	1/2	1/2	1	_	_	_	_	
b.	TempTr's	"	"	"	1/2	3/2	1/2	1/2	
		(insert normalization computations here)							
c.	Tr's	"	"	"	1/4	3/4	1/2	1/2	
d.	TempAwt's	1/8	3/8	3/4	"	"	"	"	
		(insert normalization computations here)							
e.	Awt's	1/4	3/4	1	"	"	"	"	
f.	TempTr's	"	"	"	1/4	7/4	3/4	1/4	
				((insert normalization computations here)				
g.	Tr's	"	"	"	1/8	7/8	3/4	1/4	

²Adapted from Sections 26 ("Chicken and egg") and 27 ("Now for the Magic") of Kevin Knight's (1999) A Statistical MT Tutorial Workbook (http://www.isi.edu/natural-language/mt/wkbk.rtf). The tutorial also discusses more advanced models, and is often fairly amusing to boot.