
Computation, Information, and Intelligence (ENGRI/CS/INFO/COGST 172), Spring 2007 4/9/07: Lecture 31 aid — (Lecture 30=prelim) Earley prediction; intro to grammar learning

Topics: the prediction operation of Earley's algorithm; restricted but probabilistic variants of CFGs. **Announcements**: The final exam is scheduled for Friday May 18, 2:00-4:30pm, Phillips 219.

- **I.** An alternative interpretation of parse states $(A \to \alpha \bullet \beta, i, j)$: the branch $A \to \alpha\beta$ is part of a (partial) parse where
 - the part of the sentence that the *entire branch* "covers" starts with x_i , and
 - the part of the sentence that the *pre-dot* stuff α covers ends at (and includes) x_i .
- **II. Example** Suppose the CFG has the following rewrite rules (plus others, assumedly), where "duck" is a terminal:

$$\begin{array}{ll} S \rightarrow\!\!A \ B \ C \ D \\ C \rightarrow\!\! E \ F \\ E \rightarrow\!\! duck \end{array}$$

III. Bigram models A bigram CFG would take the following form:

- Terminals: w_1, w_2, \ldots, w_m
- Nonterminals: S, V_1, V_2, \dots, V_m
- Start symbol: S
- Rewrite rules: all rewrite rules of the form
 - 1. $V_i \rightarrow w_i V_j$,
 - 2. $V_i \rightarrow w_i$, or
 - 3. $S \rightarrow V_i$

where $1 \leq i, j \leq m$.

IV. Sentence-ranking example A classic from the speech-recognition literature.

- 1. It's hard to recognize speech.
- 2. It's hard to wreck a nice beach.