CS/ENGRI 172, Fall 2003: Computation, Information, and Intelligence 9/22/03: Vector Notation for Function Input

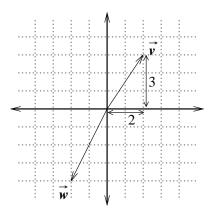
Defining Feature Vectors

In this course, our view of machine learning will be that of learning a function, which is actually a quite general framework. We will consider the input to the functions to be learned to be (numerically-valued, finite) feature vectors, or ordered tuples. An example of our notation is as follows, indicating that \vec{x} is an n-dimensional vector with its n components being x_1 through x_n :

$$\vec{x} = (x_1, x_2, \dots, x_n).$$

It is standard to indicate vectors with an arrow or boldfacing, to distinguish them from components, which are numbers ("scalars").

Two-dimensional vectors are probably the most familiar to you, since they can be associated with points in the plane. We can represent a two-dimensional vector \vec{x} as a directed arrow from the origin to the point specified by the ordered pair (x_1, x_2) . So, for example, if $\vec{v} = (2, 3)$ and $\vec{w} = (-1, -4)$, then we have the following picture:



This association of vectors with directed arrows from the origin to the point specified by the components can be continued into higher dimensions, though it becomes more difficult to draw.

A confusing fact of life is that it is common to use the letters "x" and "y" to indicate both vector names, vector components, and, in the case of two-dimensional vectors, coordinates; for example, one might say "the x-coordinate of the vector $\vec{x} = (x_1, x_2)$ is x_1 ". We will try to avoid such confusing utterances, but be aware of the potential for confusion and watch notation and context carefully.

Basic Vector Manipulation

Vectors are mathematically manipulated in a *component-wise* manner, so that we will, in general, perform an operation on a vector by performing a related operation or operations on its component scalars. For manipulations between two vectors, we will require that both vectors have the same dimensionality.

Vector addition between two vectors $\vec{x} = (x_1, x_2, \dots, x_n)$ and $\vec{y} = (y_1, y_2, \dots, y_n)$ is defined as:

$$\vec{x} + \vec{y} \stackrel{\text{def}}{=} (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

The result of vector addition is another vector of the same dimensionality. For example, if $\vec{x} = (2, 3)$ and $\vec{y} = (-1, -4)$, $\vec{x} + \vec{y} = (1, -1)$.

The inner product (or dot product) between two vectors of the same dimensionality $\vec{x} = (x_1, x_2, \dots, x_n)$ and $\vec{y} = (y_1, y_2, \dots, y_n)$ is defined as:

$$\vec{x} \cdot \vec{y} \stackrel{\text{def}}{=} \sum_{i=1}^{n} x_i y_i = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

The result of the inner product of two vectors is a *scalar*. For example, if $\vec{x} = (2, 3)$ and $\vec{y} = (-1, -4), \vec{x} \cdot \vec{y} = -2 - 15 = -17$.

The *length* of a vector $\vec{x} = (x_1, x_2, \dots, x_n)$ can be computed via the inner product:

$$length(\vec{x}) = \sqrt{\vec{x} \cdot \vec{x}}$$

For example, consider the two-dimensional case: length((x_1, x_2)) = $\sqrt{(v_1, v_2) \cdot (v_1, v_2)} = \sqrt{v_1^2 + v_2^2}$, which is exactly the Pythagorean theorem. The length of a vector is also a scalar.

An extremely handy fact is the following identity:

$$\begin{split} \vec{x} \cdot \vec{y} &= \text{length}(\vec{x}) \text{length}(\vec{y}) \text{cos}(\angle(\vec{x}, \vec{y})) \\ &= \text{length}(\vec{y}) \text{proj}(\vec{x}, \vec{y}) \end{split}$$

where for notational convenience we consider the projection of one vector onto another to be a length, i.e. a scalar, rather than a vector. To convince yourself, recall that "cosine = adjacent over hypotenuse", and consider the diagram:

