
CS/ENGRI 172, Fall 2003: Computation, Information, and Intelligence
9/15/03: Game Playing

Game Trees
The “3-game” is two players taking turns selecting unique numbers from 1 to 4; a player wins if
they get two numbers summing to 3. We’ll let © be nodes where the corresponding problem space
state has player 1 move next, and � be nodes where the corresponding problem space state has
player 2 move next. The operator αi means that player 1 choses the number i; the operator βj

means that player 2 choses the number j. The following is the complete game tree for the 3-game:

β3 β2

α2 α3

β3 β1

α1 α3α4

β2 β1

α1 α2

β2 β1

α1 α2

β2 β3 β4 β1 β3 β4 β1 β2 β4 β1 β2 β3

α1 α3 α4α2

α1

β2

α2 α3

β4 β3

α4

β4 β3

α3 α4

β2

α2 α3

β4 β2

α2 α4

β4 β1

α4

β1

α1 α4

β1

α1 α3

The minimax score of a node (in a zero-sum game, with respect to a given assignment of values
to the game tree’s leaf nodes) is the eventual benefit to player 1, assuming optimal play by all
parties, of being in the state corresponding to that node. We can compute the minimax score of
any internal node if we know the minimax score of all its children.

Evaluation function example
Here is an example of using an evaluation function on a search-limited (i.e., pruned) version of our
3-game game tree. This particular evaluation function happens to be pretty good - usually relatively
high scores are given to nodes corresponding to states from which player 1 could potentially win.

1

β3 β4β2

4 4

-2

α1 α2 α3 α4

0

β3 β4β2

3 4 -1

β3 β4β2

-2 -1

1



Alpha-beta pruning (This name is unrelated to the operator labels we’ve been using.)
The fundamental principle is that nodes whose (corresponding states’) values can’t affect decisions
“higher up” need not be examined. We will use DFS as an organizing principle for examining nodes
and propagating constraints. Two canonical situations in which nodes can be pruned are as follows;
the shape of the node indicates whose turn it is to play in the corresponding state, and next to
each node our current knowledge about its minimax value is indicated:

yyxx

In either situation, it is not necessary to consult or compute the minimax values of any heretofore
unseen nodes in the right nodes’ subtrees, because the leftmost operator will be chosen regardless
of their values.

1

β3 β4β2

4 4

-2

α1 α2 α3 α4

0

β3 β4β2

3 4 -1

β3 β4β2

-2 -1

Pruning self-checks
As a self-check, see that you can verify the following results for yourself. “Pseudo-minimax” refers
to values calculated in a minimax fashion from an evaluation function’s approximation of the leaves’
true minimax values.

1. Applying dfs-style alpha-beta pruning to the full 3-game game tree on the previous handout
(assigning values of 1 to leaves where p1 wins, -1 where p1 loses, and 0 where there is a tie)
should result in having to look at only the values of which leaves? (See footnote1.)

2. The alpha-beta pruning constraints for a given node are always consistent with the node’s
actual (psuedo-)minimax value. (This gives you a way to check your work, by the way.)

3. Assume a full game tree is accessible, and that player 1 adopts the “minimax strategy”, always
choosing the operator that yields maximum minimax value. Player 2 cannot, via suboptimal
play, cause player 1 to get benefit less than the minimax value of the root. However, if player
2 plays suboptimally, player 1 may get lower benefit via the minimax strategy than would
have been possible if they had known player 2’s strategy ahead of time and incorporated it
into their choice of moves.

1The only leaves touched are 1.1.1.1, 1.1.2.1, 1.2.1, 1.3.1, 2.1.1.1, 2.1.2.1, 3.1.1.1, 3.1.2.1, 4.1.1.1, and 4.1.2.1.

2


