CS/ENGRI 172, Fall 2003: Computation, Information, and Intelligence 11/21/03: Machine Translation

Machine Translation Paradigms

Machine translation (MT) is the automatic translation from a source language (SL) to a target language (TL), while preserving the meaning of the source text within the target text. There are three styles of approach to this problem: direct replacement, syntactic transfer, and interlingua. They vary in their flexibility and the amount of computational resources required.

Statistical Machine Translation and the IBM Candide System

Assume word-for-word translations, with no insertions or deletions of words permitted between source and target sentences. ${ }^{1}$ We compute translation probabilities using an auxiliary source of information: alignments in sentence pairs made up of mutual translations.

The algorithm description uses the following notation:
$\operatorname{tr}(s \rightarrow t)$ the transition weight (or probability) that source-language word s should be translated as target-language word t.
$p^{(1)}, p^{(2)}, \ldots, p^{(N)}$ the source/target-language sentence pairs in the training corpus
$p^{(i)}=\left(s_{1}^{(i)} s_{2}^{(i)} \ldots s_{l_{i}}^{(i)} ; t_{1}^{(i)} t_{2}^{(i)} \ldots t_{l_{i}}^{(i)}\right)$ the i th sentence pair, where $s_{1}^{(i)} \ldots s_{l_{i}}^{(i)}$ is an $l_{i^{\prime}}$-word sourcelanguage sentence and $t_{1}^{(i)} \ldots t_{l_{i}}^{(i)}$ is its l_{i}-word translation. ${ }^{2}$
$\left(1 \leftrightarrow j_{1} ; 2 \leftrightarrow j_{2} ; \ldots ; l_{i} \leftrightarrow j_{i}\right)$ an alignment, which lists for each of the l_{i} words in the sourcelanguage sentence which word of the target-language sentence it is aligned to.
$A_{1}^{(i)}, A_{2}^{(i)}, \ldots, A_{m_{i}}^{(i)}$ a set of m_{i} possible alignments associated with sentence pair p_{i}, where $m_{i}=$ $\left(l_{i}\right)\left(l_{i}-1\right)\left(l_{i}-2\right) \ldots(2)(1)$.

Contains $(s \leftrightarrow t)$ is the set of alignments A in which source-language word s is aligned with targetlanguage word $t .{ }^{3}$
freq $(s \leftrightarrow t ; A)$ is the number of times we have the word s aligned to t in alignment A.
Using the variable A to stand for an alignment drawn from an arbitrary sentence pair, we say that every alignment A has an alignment weight (or probability) awt (A).

[^0]
An Iterative Learning Algorithm for MT

1. Initialization: For every sentence pair p_{i}, set $\operatorname{awt}\left(A_{1}^{(i)}\right)=\cdots=\operatorname{awt}\left(A_{m_{i}}^{(i)}\right)=1 /\left(m_{i}\right)$.
2. Repeat the following steps in order until no more changes occur:
3. Update translation weights: For every source/target word pair (s, t), change $\operatorname{tr}(s \rightarrow t)$ to:

$$
\sum_{\text {oontains }(s \leftrightarrow t)} \operatorname{freq}(s \leftrightarrow t, A) \operatorname{awt}(A)
$$

4. Psuedo-normalize translation weights: Change each weight $\operatorname{tr}(s \rightarrow t)$ to

$$
\frac{\operatorname{tr}(s \rightarrow t)}{\sum_{t^{\prime}} \operatorname{tr}\left(s \rightarrow t^{\prime}\right)}
$$

where t^{\prime} ranges over all target language words.
5. Update alignment weights: For every $A_{k}^{(i)}=\left(1 \leftrightarrow j_{1} ; 2 \leftrightarrow j_{2} ; \ldots ; l_{i} \leftrightarrow j_{l_{i}}\right)$, change awt $\left(A_{k}^{(i)}\right)$ to $\operatorname{tr}\left(s_{1} \rightarrow t_{j_{1}}\right) \operatorname{tr}\left(s_{2} \rightarrow t_{j_{2}}\right) \cdots \operatorname{tr}\left(s_{l_{i}} \rightarrow t_{j_{l_{i}}}\right)$.
6. Psuedo-normalize alignment weights: For every alignment $A_{k}^{(i)}$, change awt $\left(A_{k}^{(i)}\right)$ to

$$
\frac{\operatorname{awt}\left(A_{k}^{(i)}\right)}{\sum_{q=1}^{m_{i}} \operatorname{awt}\left(A_{q}^{(i)}\right)}
$$

Example

Suppose we have two sentence pairs: $p_{1}=($ chat bleu, blue cat $)$ and $p_{2}=($ chat $;$ cat $)$. This yields three alignments:

$$
\begin{aligned}
& A_{1}^{(1)}=(1 \leftrightarrow 1 ; 2 \leftrightarrow 2) \quad \text { (so "chat" aligned to "blue") } \\
& A_{2}^{(1)}=(1 \leftrightarrow 2 ; 2 \leftrightarrow 1) \quad \text { (so "chat" aligned to "cat") } \\
& A_{1}^{(2)}=(1 \leftrightarrow 1) \quad \text { (only one possible choice) }
\end{aligned}
$$

The algorithm will then compute the following translation and alignment weights. After convergence, the translation weights indicate our learned word-for-word translations.

	$\operatorname{awt}\left(A_{1}^{(1)}\right)$	$\operatorname{awt}\left(A_{2}^{(1)}\right)$	$\operatorname{awt}\left(A_{1}^{(2)}\right)$	$\operatorname{tr}($ chat \rightarrow blue $)$	$\operatorname{tr}($ chat \rightarrow cat $)$	tr (bleu \rightarrow blue $)$	$\operatorname{tr}($ bleu \rightarrow cat $)$
a. Init	$1 / 2$	$1 / 2$	1	-	-	-	-
b. Update-tr	$1 / 2$	$1 / 2$	1	$1 / 2$	$3 / 2$	$1 / 2$	$1 / 2$
c. Pnorm-tr	$1 / 2$	$1 / 2$	1	$1 / 4$	$3 / 4$	$1 / 2$	$1 / 2$
d. Update-awt	$1 / 8$	$3 / 8$	$3 / 4$	$1 / 4$	$3 / 4$	$1 / 2$	$1 / 2$
e. Pnorm-awt	$1 / 4$	$3 / 4$	1	$1 / 4$	$3 / 4$	$1 / 2$	$1 / 2$
f. Update-tr	$1 / 4$	$3 / 4$	1	$1 / 4$	$7 / 4$	$3 / 4$	$1 / 4$
g. Pnorm-tr	$1 / 4$	$3 / 4$	1	$1 / 8$	$7 / 8$	$3 / 4$	$1 / 4$

[^0]: ${ }^{1}$ This is clearly a simplification of full machine translation.
 ${ }^{2}$ Note that the $s_{j}^{(i)} \mathrm{s}$ and $t_{j}^{(i)} \mathrm{S}$ do not have to be distinct. The subscript i reflects that different sentence pairs may have different lengths, though we assume that corresponding source and target language sentences have the same number of words.
 ${ }^{3}$ Notice that Contains $(s \leftrightarrow t)$ can include alignments from different sentence pairs.

