CS/ENGRI 172, Fall 2003: Computation, Information, and Intelligence 11/21/03: Machine Translation

Machine Translation Paradigms

Machine translation (MT) is the automatic translation from a *source language* (SL) to a *target language* (TL), while preserving the meaning of the source text within the target text. There are three styles of approach to this problem: direct replacement, syntactic transfer, and interlingua. They vary in their flexibility and the amount of computational resources required.

Statistical Machine Translation and the IBM Candide System

Assume word-for-word translations, with no insertions or deletions of words permitted between source and target sentences.¹ We compute translation probabilities using an auxiliary source of information: *alignments* in sentence pairs made up of mutual translations.

The algorithm description uses the following notation:

- $\mathbf{tr}(s \to t)$ the transition weight (or probability) that source-language word s should be translated as target-language word t.
- $p^{(1)}, p^{(2)}, \ldots, p^{(N)}$ the source/target-language sentence pairs in the training corpus
- $p^{(i)} = (s_1^{(i)} s_2^{(i)} \dots s_{l_i}^{(i)}; t_1^{(i)} t_2^{(i)} \dots t_{l_i}^{(i)})$ the *i*th sentence pair, where $s_1^{(i)} \dots s_{l_i}^{(i)}$ is an l_i -word source-language sentence and $t_1^{(i)} \dots t_{l_i}^{(i)}$ is its l_i -word translation.²
- $(1 \leftrightarrow j_1; 2 \leftrightarrow j_2; \ldots; l_i \leftrightarrow j_{l_i})$ an *alignment*, which lists for each of the l_i words in the sourcelanguage sentence which word of the target-language sentence it is aligned to.
- $A_1^{(i)}, A_2^{(i)}, \ldots, A_{m_i}^{(i)}$ a set of m_i possible alignments associated with sentence pair p_i , where $m_i = (l_i)(l_i 1)(l_i 2) \dots (2)(1)$.
- **Contains** $(s \leftrightarrow t)$ is the set of alignments A in which source-language word s is aligned with targetlanguage word t.³

 $freq(s \leftrightarrow t; A)$ is the number of times we have the word s aligned to t in alignment A.

Using the variable A to stand for an alignment drawn from an arbitrary sentence pair, we say that every alignment A has an *alignment weight* (or probability) awt(A).

¹This is clearly a simplification of full machine translation.

²Note that the $s_j^{(i)}$ s and $t_j^{(i)}$ s do not have to be distinct. The subscript *i* reflects that different sentence pairs may have different lengths, though we assume that corresponding source and target language sentences have the same number of words.

³Notice that Contains($s \leftrightarrow t$) can include alignments from different sentence pairs.

An Iterative Learning Algorithm for MT

- 1. Initialization: For every sentence pair p_i , set $\operatorname{awt}(A_1^{(i)}) = \cdots = \operatorname{awt}(A_{m_i}^{(i)}) = 1/(m_i)$.
- 2. Repeat the following steps in order until no more changes occur:
- 3. Update translation weights: For every source/target word pair (s, t), change tr $(s \to t)$ to:

$$\sum_{A \text{ in Contains}(s \leftrightarrow t)} \operatorname{freq}(s \leftrightarrow t, A) \operatorname{awt}(A)$$

4. Psuedo-normalize translation weights: Change each weight $tr(s \rightarrow t)$ to

$$\frac{\operatorname{tr}(s \to t)}{\sum_{t'} \operatorname{tr}(s \to t')}$$

where t' ranges over all target language words.

- 5. Update alignment weights: For every $A_k^{(i)} = (1 \leftrightarrow j_1; 2 \leftrightarrow j_2; \ldots; l_i \leftrightarrow j_{l_i})$, change $\operatorname{awt}(A_k^{(i)})$ to $\operatorname{tr}(s_1 \to t_{j_1})\operatorname{tr}(s_2 \to t_{j_2})\cdots\operatorname{tr}(s_{l_i} \to t_{j_{l_i}})$.
- 6. Psuedo-normalize alignment weights: For every alignment $A_k^{(i)}$, change $\operatorname{awt}(A_k^{(i)})$ to

$$\frac{\operatorname{awt}(A_k^{(i)})}{\sum\limits_{q=1}^{m_i}\operatorname{awt}(A_q^{(i)})}$$

Example

Suppose we have two sentence pairs: $p_1 = (chat \ bleu, blue \ cat)$ and $p_2 = (chat; cat)$. This yields three alignments:

$$\begin{aligned} A_1^{(1)} &= (1 \leftrightarrow 1; 2 \leftrightarrow 2) \quad (\text{so "chat" aligned to "blue"}) \\ A_2^{(1)} &= (1 \leftrightarrow 2; 2 \leftrightarrow 1) \quad (\text{so "chat" aligned to "cat"}) \\ A_1^{(2)} &= (1 \leftrightarrow 1) \quad (\text{only one possible choice}) \end{aligned}$$

The algorithm will then compute the following translation and alignment weights. After convergence, the translation weights indicate our learned word-for-word translations.

	$\operatorname{awt}(A_1^{(1)})$	$\operatorname{awt}(A_2^{(1)})$	$\operatorname{awt}(A_1^{(2)})$	$tr(chat \rightarrow blue)$	$\mathrm{tr}(chat \to cat)$	$\mathrm{tr}(bleu \rightarrow blue)$	$\mathrm{tr}(bleu \to cat)$
a. Init	1/2	1/2	1				—
b. Update-tr	1/2	1/2	1	1/2	3/2	1/2	1/2
c. Pnorm-tr	1/2	1/2	1	1/4	3/4	1/2	1/2
d. Update-awt	1/8	3/8	3/4	1/4	3/4	1/2	1/2
e. Pnorm-awt	1/4	3/4	1	1/4	3/4	1/2	1/2
f. Update-tr	1/4	3/4	1	1/4	7/4	3/4	1/4
g. Pnorm-tr	1/4	3/4	1	1/8	7/8	3/4	1/4