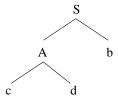

CS/ENGRI 172, Fall 2003: Computation, Information, and Intelligence 11/5/03: Context Free Grammars

Office Hours Change: William Lin's office hours have been moved from 2:30-3:30 on Mondays to 4:00-5:00 on Mondays in Upson 328A for the remainder of the semester.

Alternate Example Sentence Structures

Context Free Grammars


A context free grammar (CFG) is made up of four parts:

- terminals: a finite set of at least one symbol;
- non-terminals (or variables): a finite set of at least one symbol (distinct from the non-terminals);
- a single designated start non-terminal;
- rewrite rules: a finite set of at least one rule describing how a single non-terminal can be rewritten as a sequence of terminals and/or non-terminals (possibly intermixed).

A CFG specifies a *language* made up of *sentences*. A sentence is a sequence of terminal symbols; sentences are generated by applying rewrite rules to the non-terminals an a sequence (starting with the sequence of just the start non-terminal) until only terminals remain.

Parse Trees

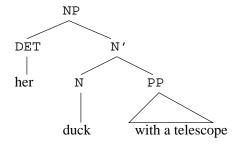
We can represent the rewriting process by *parse trees*. In a parse tree, the interior nodes are labeled by non-terminals, with the root labeled with the start non-terminal. The leaves are labeled by terminals. The children of an internal node represent, in order, the result of rewriting the non-terminal labeling the node according to one of the rewrite rules in the grammar. That is, if we have the following parse tree:

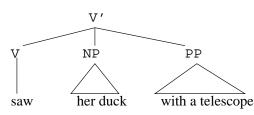
then the CFG generating the parse tree must contain the rewrite rules $A \to cd$ and $S \to Ab$.

Example CFG

Recall our example sentence "List all flights on Tuesday." with its two structural analyses given above, each corresponding to a different interpretation. We give below a CFG that will generate these two structures as parse trees (as well as many other sentences). Observe that we can use a "linear" notation with brackets (rather than the larger tree notation) to indicate the primary difference between the structures of the two interpretations:

list [all [flights on Tuesday]
$$_{N'}$$
] $_{NP}$
list [all flights] $_{NP}$ [on Tuesday] $_{PP}$


The following CFG will generate parse trees representing both interpretations:


- Terminals: list, all, flights, on, Tuesday
- Non-terminals: S, NP, N', PP, V, DET, N, P
- Start non-terminal: S
- Rewrite rules:
 - $(1) \quad S \qquad \rightarrow \quad V \text{ NP}$
 - $(2) \quad S \qquad \rightarrow \quad V \text{ NP PP}$
 - (3) V \rightarrow list
 - (4) NP \rightarrow DET N'
 - (5) NP \rightarrow DET N
 - (6) DET \rightarrow all

- (7) N \rightarrow flights
- (8) $N' \rightarrow NPP$
- (9) PP \rightarrow PNP
- (10) $P \rightarrow on$
- (11) NP \rightarrow N
- (12) N \rightarrow Tuesday

X-bar Theory example

Recall that XP is equivalent to X'', and that X-bar theory says that X is the head of X' and X''. We can use X-bar theory to explain why we can rule out some interpretations of "I saw her duck with a telescope.", where we assume "duck" is a noun:

