CS/ENGRI 172, Fall 2003: Computation, Information, and Intelligence 9/26/03: Proof of PLA Convergence

More Useful Properties of the Inner Product

It should be fairly easy to convince yourself that for vectors $\vec{v}, \vec{w}, \vec{y}$, and \vec{z} of the same dimensionality,

 $(\vec{v} + \vec{w}) \cdot (\vec{y} + \vec{z}) = \vec{v} \cdot \vec{y} + \vec{w} \cdot \vec{y} + \vec{v} \cdot \vec{z} + \vec{w} \cdot \vec{z}$

For example, in the two-dimensional case,

$$\begin{aligned} (\vec{v} + \vec{w}) \cdot (\vec{y} + \vec{z}) &= (v_1 + w_1, v_2 + w_2) \cdot (y_1 + z_1, y_2 + z_2) \\ &= (v_1 + w_1)(y_1 + z_1) + (v_2 + w_2)(y_2 + z_2) \\ &= (v_1 y_1 + w_1 y_1 + v_1 z_1 + w_1 z_1) + (v_2 y_2 + w_2 y_2 + v_2 z_2 + w_2 z_2) \\ &= (v_1 y_1 + v_2 y_1) + (w_1 y_1 + w_2 y_2) + (v_1 z_1 + v_2 z_2) + (w_1 z_1 + w_2 z_2) \\ &= \vec{v} \cdot \vec{y} + \vec{w} \cdot \vec{y} + \vec{v} \cdot \vec{z} + \vec{w} \cdot \vec{z} \end{aligned}$$

This fact also implies, as a simpler case, that for any vectors \vec{v}, \vec{y} , and \vec{z} of the same dimensionality,

$$\vec{v} \cdot (\vec{y} + \vec{z}) = \vec{v} \cdot \vec{y} + \vec{v} \cdot \vec{z}$$

Outline of our PLA Convergence Theorem Proof

We present a somewhat oblique, but therefore interesting, proof that the PLA converges. This is a general outline of the argument:

Given all of the constraints we have set for the oracle and the learner,

- First, define a *score* function which indicates how close the learner's weight vector \vec{w} is to a "target"¹ vector \vec{w}^* . Our score measure will start at 0 and have a fractional form with a numerator and a denominator.
- Now show that every time the perceptron learning algorithm *updates*, so that its weight vector \vec{w}_{old} is changed to \vec{w}_{new} , the score measure must increase by a non-negligible amount:
 - The score numerator must increase by *at least g*, the gap quantity.
 - The square of the score denominator must increase by *at most 1*.
- Therefore, after t updates, the score must have increased by at least \sqrt{tg} from the initial score of 0.
- But, since our particular score measure has an upper-bound of 1, t can be at most $\frac{1}{g^2}$, which, since g > 0, shows that only a finite number of updates get made.

¹Note the quotation marks! We are performing this proof from a vantage point outside of the oracle-learner system.