You only need to submit questions 2 to 4 in CMS.

1 Different ways to create vectors

Type the following expressions in the MATLAB *Command Window* to see what kind of vectors they create. Write the resulting vectors (and answer the questions) on the blanks.

a= zeros(1,4)	%
b= zeros(4,1)	% What do the arguments specify?
c= ones(1,3)	%
d= 10:2:17	%
f= 10:-1:17	%
g= [10 20 40]	% What does the space separator do?
h= [10,20,40]	% What does the comma separator do?
k= [10;20;40]	% What does the semi-colon separator do?
m= [a g]	%
n= [b; k]	%
p= [a k]	%ERRORmismatched dimensions! (Attempt to concatenate a column to a row)
q= b'	% This operation is called "transpose"
r= [a b']	%

2 Evaluate a polynomial

Write a function evalPoly to evaluate an n^{th} order polynomial of x:

 $a_0 + a_1x + a_2x^2 + \dots + a_nx^n$

The two input parameters are coef and x. coef is a vector or real values of length n + 1 and contains the coefficients of the polynomial. coef(1) corresponds to a_0 , the coefficient for the term x^0 . Input parameter x is a real value. Function evalPoly returns the value of the polynomial evaluated at x.

3 Minimum value in a vector

Implement the following function:

```
function [val, k] = findMin(v)
% Find the minimum value in vector v. v is a vector of real numbers. length(v)>0.
% val is the minimum value in v.
% k is the first position at which the minimum value appears.
```

4 Biggest rectangle

Implement the following function:

```
function [a,b,c,d] = biggestRectangle(x,y,v,w)
% Find the rectangle with the largest area.
% x,y,v,w are vectors of the same length containing real numbers. length(x)>0.
% The points (x(1),y(1)) and (v(1),w(1)) are the opposing corners of rectangle 1,
% the points (x(2),y(2)) and (v(2),w(2)) are the opposing corners of rectangle 2,...
% the points (x(k),y(k)) and (v(k),w(k)) are the opposing corners of rectangle k.
% (a,b) and (c,d) are the opposing corners of the biggest rectangle in the set of
% rectangles defined by x,y,v,w.
```