
CS/INFO 1305 Programming Exercise 2
Due Thursday, July 23, at 1pm

1. Write a script to sum the first n terms of the series 1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + · · ·. n is a user input

value. Name the script series.

2. During the previous lab we wrote a script to approximate the value of π by simulating dart throws.
Convert the script into a function piByDarts that has one input parameter for the number of darts
thrown and returns the value of π estimated in the simulation. Pay attention to the function header
and specification (comment).

3. Write a function triangle to print (in the Command Window) a triangle of asterisks. Each side
of the triangle has n asterisks—n is the parameter of the function. This function is supposed to just
print a pattern, so there is no value for the function to return. Therefore, there should be no output
parameter in the function header, as shown below:

function triangle(n)

Use nested loops in your function. (Do not call function printRepeatChar as we did in class.) Here is
example output for n = 4:

*
**

4. Implement the following function:

function drawRowOfSqrs(n,x,y,s,c1,c2)
% Add to the figure window a row of n adjacent squares. The lower left
% corner of the first square is at (x,y) and the side length of the square
% is s. The squares alternate in color, starting with color c1.

For example, calling function drawRowOfSqrs with the following script will produce the diagram on
the right.

close all
figure
axis equal off
hold on
drawRowOfSqrs(7,0,0,1,’y’,’b’)
hold off

5. Write a script floorTiles to draw a 2-color “tile floor” in which adjacent tiles are of different
colors. An example of a 10-tile-by-8-tile floor is shown below. Make use of function drawRowOfSqrs
above! Use the usual figure window setup.

1

6. Challenge question!! (No need to submit this.) Write a script floorTiles2 to draw a 2-color “tile
floor” in which adjacent tiles are of different colors. This time use nested loops. The only user-defined
function you can call is DrawRect. Enjoy this challenge!

Review

This is a reminder about certain nice properties of if-statements and how to cut down on superfluous
code. You worked on this in Programming Exercise 1 last week. Suppose you have a nonnegative ray
angle A in degrees. The following code determines in which quadrant A lies:

A = input(’Input angle in degrees: ’);
A = rem(A, 360); %Given nonnegative A, result will be in the interval [0,360)

if A < 90
quadrant= 1;

elseif A < 180
quadrant= 2;

elseif A < 270
quadrant= 3;

else
quadrant= 4;

end

fprintf(’Angle %f lies in quadrant %d\n’, A, quadrant);

Notice that in the second condition, it is not necessary to check for A>=90 in addition to A<180 because
the second condition, in the elseif branch, is executed only if the first condition evaluates to false.
That means that by the time the computer gets to the second condition, it already knows that A is ≥
90 so writing A>=90 && A<180 as the second condition would be redundant. Similarly, the concise way
to write the third condition is to write only A<270 as above—it is unnecessary to write the compound
condition A>=180 && A<270. This is the nice (efficient) feature of “cascading.” The same is true for
“nesting.” If I do not cascade or nest, but instead use independent if-statements, then I must use
compound conditions in some cases, as shown in the fragment below:

if A < 90
quadrant= 1;

end
if A >=90 && A < 180
quadrant= 2;

end
if A >=180 && A < 270
quadrant= 3;

end
if A >=270
quadrant= 4;

end

2

