CS/INFO 1305 Summer 2009

= Previous class:
= User-defined function
= Nested loops

= Now:

= Working with colors

= Play with sound files

Plot a continuous function (from a table of values)

sin(x)

= |-dimensional array—vector

1
0.00 0
1.57 1
3.14 0.
4.71 -1.
6.28 0

Plot based on 5 points

looks smooth

sin(x)

Plot based on 200 discrete points, but it

Generating tables and plots .
5. Avectoris@

ectors.
%y areV list of values

X sin(x) 1-dimensional
0.000 0.000 _ _
0.784 0.707 X= I!nspace(o,z*pl,Q);
1.571 1.000 Y= SinC);
2.357 0.707 Plot(x.y)
3.142 0.000
3.927 -0.707
4.712 -1.000 i
5.498 -0.707 o2
6.283 0.000

in(x)

Note: x, y are shown in columns due to space limitation; they should be rows.

Built-in function linspace
x= linspace(1,3,5)
x [1.0[1.5]2.0] 2.5[3.0 |

x= linspace(0,1,101
P ; \?

x [0.00]8701{0.02| N\, [0.991.00|

Left endpoint Number
of points

- . i ! !
How did we get all the sine values? 0.30 S(')r_lox
1.57 1.0
3.14 0.0
4.71 -1.0
6.28 0.0

|0.00|l.57|3_14|4_71|6.28|

|o.oo|1.oo|o.oo|-1.oo|o.oo|

6

CS/INFO 1305 Summer 2009

Vectorized addition

Matlab code: z= X + VY

Vectorized subtraction
x |2]1]s5]8]
: y [1]2]o]1]

1
N

[[as]7]

Matlab code: z= X -y

Vectorized multiplication

X

oy [
=] [
o] e
e
][]

I
(¢
]
|

Matlab code: c= a .* b

L]

Vectorized

element-by-element arithmetic operations
on arrays

—_—

—

>

. Yy

—_—

A dot (.) is necessary in front of these math operators

Shift

I!

nnnn

. . [s[ehsu

Matlab code: z= X + VY

Reciprocate

~
<

HEED

(s[a]2

1
N

Matlab code: z=

X
‘.\
<

CS/INFO 1305 Summer 2009

Vectorized
element-by-element arithmetic operations between an
array and a scalar

T+ O 0+ OIIrTrm
11 - O 0 - OITTrm
T~ O 0~ OIITTm
DN /o

0 o
DN -~ B -~

A dot (.) is necessary in front of these math operators

The dotin [IH-* , [@-*I , EE-/E not necessary but OK

Color is a 3-vector, sometimes called the RGB
values

Any color is a mix of red, green, and blue

Example:
colr= [0.4 0.6 O]

Each component is a real value in [0,1]
= [0 0 0] is black

-]

Let’s show the “paint chips” from white to black

Name the script white2black

Mix two colors

Implement this function:

function newc = mixEqual(cl,c2)
% Average colors cl and c2.

% cl, c2, and newc are vectors
% representing colors.

% Display the three colors.

I-d array: vector

= An array is a named collection of like data
organized into rows or columns

= A |-d array is a row or a column, called a vector

= An index identifies the position of a value in a
vector

score 93/ 92| 87| 0]90|82

Array index starts at |

Let k be the index of vector x, then
= kk must be a positive integer

m | <=k <= length(x)

= To access the k™ element: x(k)

CS/INFO 1305 Summer 2009

Accessing values in a vector

score 93/ 92| 87| 0| 90|82

1 2 3 4 5 6
Given the vector score ...

Accessing values in a vector

score | 93/ 99| 87|80 | 85|82

1 2 3 4 5 6
Given the vector score ...

score(4)= 80;

score(5)= (score(4)+score(5))/2;
k= 1;

score(k+1)= 99;

A few different ways to create a vector
(More later!)

count= zeros(1,6) conc[0]o o]0]o]0]
x= linspace(10,30,5) X_

<
1

[3721] A e

z

N
1

[3; 7; 2]

Drawing a single line segment

a= 0; % x-coord of pt 1
b= 1; % y-coord of pt 1
c= 5; % x-coord of pt 2
d= 3; % y-coord of pt 2
plot([a c], [b d], ‘-’:\’)

Line/marker
format

x-values y-values
(a vector) (a vector)

Drawing a polygon (multiple line segments)

% Draw a rectangle with the lower-left
% corner at (a,b), width w, height h.
x= [a atw atw a a]; % x data

y=[b b b+h b+h b]; % y data

plot(x, y)

Coloring a polygon (fill)

% Draw a rectangle with the lower-left
% corner at (a,b), width w, height h,
% and fill it with a color named by c.
x= [a atw atw a a]; % x data
y=[b b b+h b+h b]; % y data
fill(x, y, ©)

A built-in function

CS/INFO 1305 Summer 2009

Coloring a polygon (fill)

% Draw a rectangle with the lower-left
% corner at (a,b), width w, height h,
% and fill it with a color named by c.
x= [a atw atw a /d]; % x data
y=[b b b+h b+h)z{]; % y data
fill(x, y, ¢)

Built-in function il l actually does
the “wrap-around” automatically.

Another twinkling constellation

= Write a script that generate 9 random
positions—the configuration of my constellation
= Simulate 10 rounds of twinkling

= In each round, each star is equally likely to be lit or
black

= Can you add some random adjustment to the
color of the star?

= Optional: allow the user to set the constellation
by clicking on the figure

x= [0.1 -9.2 -7 4.4];
y=[9-4 7 -6.2 -3];
fill(x,y,"g")

Example

= Write a program fragment that calculates the
cumulative sums of a given vector V.

s The cumulative sums should be stored in a
vector of the same length as v.

1,3,50 v
1,4,9,9 cumulative sums of v

v [OI7TT]
csum[T[] 1]

v
Sum[T LT csumB)= cswalk-D+ V()
v 2 3

Sum (zD=VN+VI2)TVv(3) ﬂ
Sum () =V (D4 (2 49 (5) + v (4)
—_—

CSwn(3)

csSwm (D) = V(l))-
'&"‘ k =2: ﬁﬂa«g'{'f/\(}l)

cswm(k) = csumlk-1) 4 v(k);
end

