

How does a human learn?

What is Machine Learning?

- A system that can improve on task T, with respect to performance measure P, after observing experience E.
- Task: Distinguish

- Experience: Labeled instances of Deer & Horses
- Performance: Accuracy

Central challenge in machine learning

How can we build computer systems that automatically improve with experience, and what laws govern learning in general?

- Statistics
 - What can be inferred from a set of data, with what reliability?
- Computer science
 - How can we build computers to solve problems, and which problems are tractable/intractable?
- · Human learning
 - What mechanisms explain learning in humans, and what teaching strategies are most effective?

Eric Xing 2006

Why use machine learning?

- Data comes in too fast for humans to process
 - Every credit card transaction
 - Every e-mail message
- · Data set is just too large for humans to process
 - Protein folding
 - Sloan Digital Sky Survey
- · Machines can make decisions faster
 - Once trained, many models predict almost instantly
- Personalization / adaptation
 - Speech recognition
 - ..

What's going on in the wizard's head?

- What are the concepts or models being learned?
- We'll talk about three kinds
 - Rules
 - Linear models
 - Memory-based

Rule-based models

- · A sequence of if-then
 - Just like Matlab's if-else!
- Need to express rules explicitly
- Example: grammar/spelling checker

Linear models

- Represent a problem as a set of features; each feature gets a number of points
- Example: is this document about soccer?
 - Contains "soccer": 50 points
 - Contains "basketball": -50 points
 - Contains "Beckham": 100 points
 - Contains "Posh Spice": -100 points
 - **–** ...
 - If total number of points > 0, say "yes"

Memory-based models • The model is the training data! HORSE Very, very hard to write an algorithm write an algorithm write an algorithm collect Which is closer?

How do we get these models?

- · Labeled training data
 - Humans have to
 - Collect data (emails, pictures of animals, ...)
 - Label the data (spam vs. not-spam; deer vs. Horse, ...)

- · There are many algorithms
 - We'll discuss one: Naïve Bayes

Experimentation

- · Need to train and evaluate
- Split data into a training set and a test set
 - Train the wizard on the training data
 - Evaluate the wizard on the test data
- Lots of data is needed to get a wise wizard, so why not use the whole data set for training?
 - If you evaluate the wizard on (any part of the) training data, it's like letting the wizard "cheat" on a test

Measuring the wizard's skill

- Simplest measure is accuracy on what fraction of the test cases does the wizard predict correctly?
- Accuracy is not a good measure in some cases
 - E.g., credit card fraud
 - Very rare event → always negative = 99.9% accurate
 - Better measure: false positive rate, false negative rate
- Precision and recall (remember them?)

Other machine learning topics

- Active learning
 - Labels are expensive!
 - Remember CAPTCHA?
 - Image labeling game

Is OCR "learning" when you "teach" the system how to read/recognize the characters in the word?

Other machine learning topics

- Active learning
 - Labels are expensive!
 - Remember CAPTCHA?
 - Image labeling game
- · Unsupervised learning
 - Learning without the correct answers
- Theory
 - How much data do you need to learn something?
 - What kinds of concepts can you learn?

- Also known as "junk mail" or "unsolicited bulk" email"
 - Unsolicited you didn't ask for it
 - Bulk sent to lots and lots of people, not just you
- Typical legal definition: unsolicited commercial email from someone without a pre-existing business relationship
- Huge problem
 - 50% of all e-mail sent is spam

Much of this material is from Joshua Goodman's SPAM tutorial

What are the recent spam topics

Why is there spam?

- Money!
- Almost free advertisement
- Cost of sending spam ~0.01 cent per message.
- If I in 100,000 people buy, and I earn \$11 for that purchase, then I make a profit!

Spamming techniques to defeat filters

- · Content in image
- · Chaff
 - Text chaff
 - Content chaff
- · Obscuring words

Besides email, where else do you get spam?

Besides email, where else do you get spam?

- "old media"
 - Physical junk mail
 - Phone calls
- · Instant messenger
- Chat rooms
- Popups
- Link spam

Naïve Bayes spam filtering

- · Most common kind of spam filter
 - Although many filters include rules and other features
- Who is Bayes?
 - 18th century mathematician
 - Let's learn some probability

- What if I decide I'm going to pick a solid sock?
- P(sock is red | solid pattern) = 3/4

Bayes' Theorem · Thomas Bayes $P(red \mid solid) = P(solid \mid red) * P(red)/P(solid)$ * 5/8 / 4/8 3/5

Naïve Bayes machine learning for spam classification

- Use vector space model of messages
- · Decide which is bigger:
 - P(message is spam | words in message)
 - P(message is not spam | words in message)
- Use Bayes' rule

Computation of the "probabilities"

- · Simplify the computation by
 - computing a score instead of the probability
 - computing log(P) instead of P
- Prediction of spam if

score(spam) > score(not-spam)

Otherwise predict not-spam

- Why is it "naïve"?
 - Assume the probability of the words in the message to be independent

What are some solutions for ending spam?

- Filtering
 - Machine learning
 - Blackhole lists (IP filtering)
 - Whitelisting
- Postage
 - Money
 - Turing tests
 - Other computation