Information Retrieval (Search)

IR

Artificial Intelligence → IR

Information Retrieval

- Search
- Using a computer to find relevant pieces of information
- · Text search
- Idea popularized in the article As We May Think by Vannevar Bush in 1945

Where (or for what) do you do text search?

- World Wide Web
 - Using, e.g., Google, Yahoo
- Library catalog
- Personal (desktop) search
 - Email, files
- Within a document
 - Search-n-replace a word
- Specific domain/database
 - Medline (free)
 - Westlaw (for a fee)

Terminology

- Query
 - What you tell the computer to look for
- Document
 - What you are hoping to find
 - A webpage that contains the info you're after
 - A specific file on your computer
 - A specific email in your mail box

Type of search

- Flat text
 - Query: robot vision
- · Quoted phrases
 - Query: "robot vision"

Finding and comparing documents

The vector space model is one method that performs a ranked search

Represent a document as a vector, i.e., a list of individual words

Represent the query as a vector

Compare the two vectors mathematically

Vector space model

- · Vectors are very, very long
 - We say it is a "high-dimensional" problem
 - # dimensions = size of vocabulary

- · Very computationally intensive
- · Any other problems?

Variation: term weighting

Some words are more discriminating than others. E.g., "the" appears in just about every document

- Term frequency (TF)
 - E.g., The more times "Potter" is in the doc, the more likely the doc is about him
- Inverse document frequency (IDF)
 - The more documents there are containing a certain word, the less likely that word is important

Two different notations to encode the same vector information

{ 3:a 1:and 1:I 1:play 1:saw 1:sloth 1:snail 1:soccer 1:tortoise 1:with }

Preparing documents for vector space model

- Stemming
 - Potter's = Potters = Potter
- Stop-words
 - Ignore words like "the", "of", ...
- Use statistical properties of text
 - E.g, Data from Jamie Callan's Characteristics of Text, 1997 (Sample of 19 million words)

	f		f		f
the	1,130,021	from	96,900	or	54,958
of	547,311	he	94,585	about	53,713
to	516,635	million	93,515	marke	52,110
a	464,736	year	90,104	they	51,359
in	390,819	its	86,774	this	50,933
and	387,703	be	85,588	would	50,828
that	204,351	was	83,398	you	49,281
for	199,340	compar	ny83,070	which	48,273
is	152,483	an	76,974	bank	47,940
said	148,302	has	74,405	stock	47,401
it	134,323	are	74,097	trade	47,310
on	121,173	have	73,132	his	47,116
by	118,863	but	71,887	more	46,244
as	109,135	will	71,494	who	42,142
at	101,779	say	66,807	one	41,635
mr	101,679	new	64,456	their	40,910
with	101,210	share	63,925		

Finding documents

- Brute-force approach?
 - Look through every single document every time you have a query
- Efficient way?
 - Make an index

Evaluating IR methods

- Precision
 - How many of the returned documents are relevant?
- Recal
 - How many of the relevant documents are returned?
 - Cannot be the sole criterion in evaluation
- Fall-out
 - How many of the non-relevant documents are returned?
- Can combine these criteria

What's special about web search?

- Hyperlinks
- Size—scalability issues
- Dynamic content
- Untrained users
- Economic model (advertising)

Web Search

Artificial Intelligence \Rightarrow Information Retrieval \Rightarrow Web Search

"Crawling" the web

- Following the links to determine the link structure
- What are some issue and considerations?
 - Broken links, timeouts, ... cause failures
 - Update frequency
 - Coverage, duplicate detection
 - Legal issues (owners don't want their pages indexed)
 - Advertising links
 - Types of content
 - ...

Web search through link analysis

- Find relevant webpages by analyzing the link structure, not by the content
- Most famous algorithm is PageRank
- There are other kinds of link analysis
 - E.g., citation analysis—count the number of references to individual research papers (CiteSeer)

PageRank

- Important part of Google's success (although most search engines use something like PageRank nowadays)
- Rank pages not just by how <u>relevant</u> they are, but also by how <u>important</u> they are
- Estimate importance by considering a link as a vote
 - The more pages link to you, the more important you are

The PageRank idea

- · Many pages link to my page
- → there are many ways to get to my page
- → the probability of getting to my page is high
- → I am important

Start from a random page Repeat:

Click on a random link → go to that page

Do a large number of such simulations.

Where do you end up after a large number of clicks?

For each page, how many visitors end up there?

Give the ranks by importance of all the pages

Google can combine this with: TF IDF voodoo

Web search is big business! Advertising

- · The advertiser
 - Buy words (e.g., "digital camera")
 - Then if my search has those words, I'll see their ad
- · The webmaster
 - I want to put ads on my site (revenue)
 - I give space on my site to a search engine company and they fill it with relevant ads
- The user
 - Sees sponsored results