- Previous topic:
 - Branching
 - Boolean expressions
- Now:
 - Introduction to for-loop

Question

A stick of unit length is split into two pieces. The breakpoint is randomly selected. On average, how long is the shorter piece?

Physical experiment? *

Thought experiment? → analysis

Computational experiment! → simulation •

Need to repeat many trials!

Question

A stick of unit length is split into two pieces. The breakpoint is randomly selected. On average, how long is the shorter piece?

A: .000001

.333333

.499999

none of the above

% one trial of the experiment breakPt= rand(1); if breakPt<0.5 shortPiece= breakPt; shortPiece= 1-breakPt; end

Repeat n times

```
% one trial of the experiment
breakPt= rand(1);
shortPiece= min(breakPt, 1-breakPt);
```

Take average

Print result

total= 0; % accumulated length so far for k= 1:n % one trial of the experiment breakPt= rand(1); shortPiece= min(breakPt, 1-breakPt); total= total + shortPiece; end aveLength= total/n fprintf('Average length is f^n , ... aveLength)

n= 10000; % number of trials

Important Features of Iteration A task can be accomplished if some steps are repeated; these steps form the loop body Need a starting point

- Need to know when to stop
- Need to keep track of (and measure) progress update

10

Monte Carlo Estimation of π Throw N darts

Sq. area = $N = L \times L$ Circle area = N_{in} = $\pi L^2/4$ $\pi = 4 N_{in} / N$

Monte Carlo Approximation of Pi

For each of N trials
Throw a dart
If it lands in circle
add 1 to total # of hits

Pi is 4*hits/N

Monte Carlo Pi with N darts on L-by-L board

for k = 1:N
 % Throw kth dart

% Is it in the circle?

end
myPi = 4*hits/N;


```
% What will be printed?

for k = 10:-1:14

fprintf('%d', k)
end
fprintf('!')

B: 10 (then error)

C: 10!

D: 14!

E: !
```

