
Shell command line substitutions

(expansions) revisited

. . .‘command‘. . . — substitute the output of a command

*, ?, [] — substitute all matching filenames

{} — substitute all choices

\ — escape next char

$var — substitute value of variable var (try echo $PATH)

". . ." — only variable and command expansion

’. . .’ — pass everything as-is

Combining commands (revisited)

command1; command2 — run commands sequentially

command1 && command2 — run command2 if command1 succeeded

command1 || command2 — run command2 if command1 failed

(command1; command2; command3 . . .) — run commands in a subshell

: — do nothing

Shell scripts

When a first line in a text file has a form

#!/full/path/to/program options

and the file is executable, than running file arguments is the same as

running

/full/path/to/program options file argument

Such a file would be called a script.

Shell scripts: $0 is a script name, $i is an i-th argument (1 <= i <= 9),

$* is all arguments

Bourne shell scripts

Branching for loop while loop

if condition1 for var in list while condition

then command1 do do

elif condition2 commands commands

then command2 done done

. . .
else command3

fi

if condition; then command; fi is the same as

condition && command

if condition; then :; else command; fi is the same as

condition || command

Conditions – test

test condition or [condition]

Condition Meaning
-f file file exists and is a regular file
-r file file exists and is readable
-d file file exists and a directory
-n string string has non-zero length
-z string opposite of -n

s1 = s2 strings are identical
n1 -gt n2 n1 is greater than n2

n1 -lt n2 n1 is less than n2

(condition) same as condition
condition1 -a condition2 both are true
condition1 -o condition2 either one is true

