
Standard process I/O

In Unix, a process normally has at least 3 I/O channels (or file descrip-

tors) associated with it:

0 — stdin — standard input

1 — stdout — standard output

2 — stderr — standard error

Most programs print their output to stdout and error messages to stderr

(screen–oriented programs like vi, pine or less and X-Windows pro-

grams are an exception). Many programs that normally operate on files

would operate on stdin when no file argument is given, for example

grep, sort, wc. Many programs would allow users to specify “-” instead

of a file name to mean reading from stdin or writing to stdout.

By default, all 3 point to your current terminal, but any of them can

be redirected.

Redirecting stdout

command > file redirects the output (but not the error messages) of the

command to file .

Redirecting stdin

command < file takes the input of the of the command from file .

Pipes

command1 | command2 takes the output of command1 and gives is an input

to command2 .

It’s possible to do many redirections at the same time:

command1 < infile | command2 | command3 | command4 > outfile

ShellsThe program that reads the command line, parses it, does I/O

redirection, calls appropriate commands with appropriate options, etc is

called command shell. There are different flavors of shells:

sh — Bourne shell — very basic one

csh — C shell

ksh — Korn shell — sh-compatible shell

bash — Bourne again shell — another sh-compatible shell, incorporates

features from both ksh and csh

tcsh — an extension of csh

To switch between shells temporarily, just run a new shell. To make it

permanent, run chsh command.

Shell command line substitutions

(expansions)

. . .‘command‘. . . — substitute the output of a command

*, ?, [] — substitute all matching filenames

{} — substitute all choices

\ — escape next char

$var — substitute value of variable var

". . ." — only variable and command expansion

’. . .’ — pass everything as-is

