
1

CS101J, Cornell 0

Function equals

Chapter

public class Object {

 …

 /** = "This object and object ob are
 the same object". */
 public boolean equals(Object ob) {
 return this == ob;
 }

} a0
Object

equals(Object) …

c1 a0 c2 a1

c1.equals(c1) is true

c1.equals(c2) is false

CS101J, Cornell 1

Overriding function equals

Chapter

a0
Object

equals(Object) …

C

equals(Object)

/** = “Object ob has class C & equals this object */
public boolean equals(Object ob)

type must be Object.

Check this property!

c1.equals(new Integer(5)) is false

c1 a0

CS101J, Cornell 2

Overriding function equals

Chapter

a0
Object

equals(Object) …

C
equals(Object)

/** = “Object ob has class C & equals this object */
public boolean equals(Object ob)

You get to
decide what

equals means

Reflexive: c1.equals(c1) is true.

But it should be an equality relation!
For c1, c2, c3 not null and of the same class

Symmetric: c1.equals(c2) and
 c2.equals(c1) yield same value.

Transitive: If c1.equals(c2) and
 c2.equals(c3) are true,
 then so is c1.equals(c3).

CS101J, Cornell 3

Specifying equals

Chapter

a0
Object

equals(Object) …

C
equals(Object)

/** = “Object ob has class C & equals this object */
public boolean equals(Object ob)

Make specification abstract:

in terms of the meaning of the class, not
always in terms of fields, which the user may
not know about.

Example: String equality:

/** = “ob is a String and contains the same
 sequence of characters as this String”. */
public boolean equals(Object ob)

