
Prelim 2 Review
Fall 2015

CS 1110

Exam Info

• Prelim 2: 7:30–9:00PM, Thursday, Nov. 12th
§ Last name A – J in Uris G01
§ Last name K – Z in Statler Auditorium
§ SDS Students will get an e-mail

• To help you study:
§ Study guides, review slides are online
§ Review solution to prelim 1 (esp. call stack!)

• Grades will be released before next class
11/8/15 Prelim 2 Review 2

What is on the Exam?

• Five questions from the following topics:
§ Recursion (Lab 8, A4)
§ Iteration and Lists (Lab 7, A4, A6)
§ Defining classes (Lab 9, Lab 10, A6)
§ Drawing folders (Lecture, A5)
§ Exceptions (Lectures 10 and 20)
§ Short Answer (Terminology, Potpourri)

• +2 points for name, netid AND SECTION
11/8/15 Prelim 2 Review 3

What is on the Exam?

• Recursion (Lab 8, A4)
§ Will be given a function specification
§ Implement it using recursion
§ May have an associated call stack question

• Iteration and Lists (Lab 7, A4, A6)
• Defining classes (Lab 9, Lab 10, A6)
• Drawing folders (Lecture, A5)
• Exceptions (Lectures 10 and 20)
• Short Answer (Terminology, Potpourri)

11/8/15 Prelim 2 Review 4

Recursive Function

def merge(s1,s2):
"""Returns: characters of s1 and s2, in alphabetical order.
Examples: merge('ab', '') = 'ab'
merge('abbce', 'cdg') = 'abbccdeg'
Precondition: s1 a string with characters in alphabetical order
s2 a string with characters in alphabetical order"""

11/8/15 Prelim 2 Review 5

Recursive Function

def merge(s1,s2):
"""Returns: characters of s1 and s2, in alphabetical order.
Examples: merge('ab', '') = 'ab'
merge('abbce', 'cdg') = 'abbccdeg'
Precondition: s1 a string with characters in alphabetical order
s2 a string with characters in alphabetical order"""

11/8/15 Prelim 2 Review 6

• Make input “smaller” by pulling off first letter
• Only make one of two strings smaller each call
• Which one should you make smaller each call?

Hint:

Call Stack Question

def skip(s):
"""Returns: copy of s
Odd letters dropped"""

1 result = ''
2 if (len(s) % 2 = 1):
3 result = skip(s[1:])
4 elif len(s) > 0:
5 result = s[0]+skip(s[1:])
6 return result

• Call: skip('abc')
• Recursive call results

in four frames (why?)
§ Consider when 4th

frame completes line 6
§ Draw the entire call

stack at that time
• Do not draw more

than four frames!

11/8/15 Prelim 2 Review 7

What is on the Exam?

• Recursion (Lab 8, A4)
• Iteration (Lab 7, A4, A6)

§ Again, given a function specification
§ Implement it using a for-loop
§ May involve 2-dimensional lists

• Defining classes (Lab 9, Lab 10, A6)
• Drawing folders (Lecture, A5)
• Exceptions (Lectures 10 and 20)
• Short Answer (Terminology, Potpourri)

11/8/15 Prelim 2 Review 8

Implement Using Iteration

def evaluate(p, x):
"""Returns: The evaluated polynomial p(x)
We represent polynomials as a list of floats. In other words

[1.5, −2.2, 3.1, 0, −1.0] is 1.5 − 2.2x + 3.1x**2 + 0x**3 − x**4

We evaluate by substituting in for the value x. For example

evaluate([1.5,−2.2,3.1,0,−1.0], 2) is 1.5−2.2(2)+3.1(4)−1(16) = −6.5
evaluate([2], 4) is 2

Precondition: p is a list (len > 0) of floats, x is a float"""

11/8/15 Prelim 2 Review 9

Example with 2D Lists (Like A6)

def max_cols(table):
"""Returns: Row with max value of each column
We assume that table is a 2D list of floats (so it is a list of rows and
each row has the same number of columns. This function returns
a new list that stores the maximum value of each column.
Examples:

max_cols([[1,2,3], [2,0,4], [0,5,2]]) is [2,5,4]
max_cols([[1,2,3]]) is [1,2,3]

Precondition: table is a NONEMPTY 2D list of floats"""

11/8/15 Prelim 2 Review 10

What is on the Exam?

• Recursion (Lab 8, A4)
• Iteration (Lab 7, A4, A6)
• Defining Classes (Lab 9, Lab 10, A6)

§ Given a specification for a class
§ Also given a specification for a subclass
§ Will “fill in blanks” for both

• Drawing folders (Lecture, A5)
• Exceptions (Lectures 10 and 20)
• Short Answer (Terminology, Potpourri)

11/8/15 Prelim 2 Review 11

11/8/15 Prelim 2 Review 12

class Customer(object):
"""Instance is a customer for our company
Mutable attributes:

_name: last name [string or None if unknown]
_email: e-mail address [string or None if unknown]

Immutable attributes:
_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE
Enforce all invariants and enforce immutable/mutable restrictions

DEFINE INITIALIZER HERE
Initializer: Make a Customer with last name n, birth year y, e-mail address e.
E-mail is None by default
Precondition: parameters n, b, e satisfy the appropriate invariants

OVERLOAD STR() OPERATOR HERE
Return: String representation of customer
If e-mail is a string, format is 'name (email)'
If e-mail is not a string, just returns name

11/8/15 Prelim 2 Review 13

class PrefCustomer(Customer):
"""An instance is a 'preferred' customer
Mutable attributes (in addition to Customer):

_level: level of preference [One of 'bronze', 'silver', 'gold'] """

DEFINE GETTERS/SETTERS HERE
Enforce all invariants and enforce immutable/mutable restrictions

DEFINE INITIALIZER HERE
Initializer: Make a new Customer with last name n, birth year y,
e-mail address e, and level l
E-mail is None by default
Level is 'bronze' by default
Precondition: parameters n, b, e, l satisfy the appropriate invariants

OVERLOAD STR() OPERATOR HERE
Return: String representation of customer
Format is customer string (from parent class) +', level'
Use __str__ from Customer in your definition

What is on the Exam?

• Recursion (Lab 7, A4)
• Iteration and Lists (Lab 6, A4, A5)
• Defining classes (Lab 8, Lab 9, A5)
• Drawing class folders (Lecture, A5)

§ Given a skeleton for a class
§ Also given several assignment statements
§ Draw all folders and variables created

• Exceptions (Lectures 10 and 20)
• Short Answer (Terminology, Potpourri)

11/8/15 Prelim 2 Review 14

Two Example Classes
class CongressMember(object):

"""Instance is legislator in congress
Instance attributes:

_name: Member's name [str]"""

def getName(self):
return self._name

def setName(self,value):
assert type(value) == str
self._name = value

def __init__(self,n):
self.setName(n) # Use the setter

def __str__(self):
return 'Honorable '+self.name

class Senator(CongressMember):
"""Instance is legislator in congress
Instance attributes (plus inherited):

_state: Senator's state [str]"""
def getState(self):

return self._state

def setName(self,value):
assert type(value) == str
self._name = 'Senator '+value

def __init__(self,n,s):
assert type(s) == str and len(s) == 2
CongressMember.__init__(self,n)
self._state = s

def __str__(self):
return (CongressMember.__str__(self)+

' of '+self.state)
11/8/15 Prelim 2 Review 15

‘Execute’ the Following Code

>>> b = CongressMember('Jack')
>>> c = Senator('John', 'NY')
>>> d = c
>>> d.setName('Clint')

• Draw two columns:
§ Global space
§ Heap space

• Draw both the
§ Variables created
§ Object folders created
§ Class folders created

• If an attribute changes
§ Mark out the old value
§ Write in the new value

11/8/15 Prelim 2 Review 16

Remember:
Commands outside of
a function definition

happen in global space

What is on the Exam?

• Recursion (Lab 8, A4)
• Iteration and Lists (Lab 7, A4, A6)
• Defining classes (Lab 9, Lab 10, A6)
• Drawing class folders (Lecture, A5)
• Exceptions (Lectures 10 and 20)

§ Try-except tracing (skipped on Prelim 1)
§ But now with dispatch on type
§ Will give you exception hierarchy

• Short Answer (Terminology, Potpourri)

11/8/15 Prelim 2 Review 17

Exceptions and Dispatch-On-Type
def first(x):

print 'Starting first.'
try:

second(x)
except IOError:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:

third(x)
except AssertionError:

print 'Caught at second’
print 'Ending second’

def third(x):
print 'Starting third.'
if x < 0:

raise IOError()
elif x > 0:

raise AssertionError()
print ’Ending third.'

What is the output of first(-1)?

11/8/15 Prelim 2 Review 18

StandardError

AssertionError IOError

HINT:

Exceptions and Dispatch-On-Type
def first(x):

print 'Starting first.'
try:

second(x)
except IOError:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:

third(x)
except AssertionError:

print 'Caught at second’
print 'Ending second’

def third(x):
print 'Starting third.'
if x < 0:

raise IOError()
elif x > 0:

raise AssertionError()
print ’Ending third.'

What is the output of first(1)?

11/8/15 Prelim 2 Review 19

What is on the Exam?

• Recursion (Lab 7, A4)
• Iteration and Lists (Lab 6, A4, A5)
• Defining classes (Lab 8, Lab 9, A5)
• Drawing class folders (Lecture, Study Guide)
• Exceptions (Lectures 10 and 20)
• Short Answer (Terminology, Potpourri)

§ See the study guide
§ Look at the lecture slides
§ Read relevant book chapters

In that order

11/8/15 Prelim 2 Review 20

Any More Questions?

11/8/15 Prelim 2 Review 21

