
Last Name: First: Netid: Section

CS 1110 Final, December 17th, 2014

This 150-minute exam has 8 questions worth a total of 100 points. Scan the whole test before
starting. Budget your time wisely. Use the back of the pages if you need more space. You may tear
the pages apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, look at any reference material, or otherwise give or receive unauthorized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

Unless you are explicitly directed otherwise, you may use anything you have learned in this course.

Question Points Score

1 2

2 10

3 12

4 18

5 12

6 12

7 18

8 16

Total: 100

The Important First Question:

1. [2 points] Write your last name, first name, netid, and lab section at the top of each page.

Last Name: First: Netid: Section

Throughout this exam, there are several questions on sequences (strings, lists, and tuples). All
sequences support slicing. In addition, you may find the following expressions below useful
(though not all of them are necessary).

Expression Description
len(s) Returns: number of elements in sequence s; it can be 0.
x in s Returns: True if x is an element of sequence s; False otherwise.
s.index(x) Returns: index of the FIRST occurrence of x in s.

Raises a ValueError if x is not found.
x.append(a) (Lists Only) Adds a to the end of list x, increasing length by 1.
x.remove(a) (Lists Only) Removes first occurrence of a in x, decreasing length by 1.
x.extend(y) (Lists Only) Appends each element in t to the end of list x, in order.
x.insert(i,y) (Lists Only) Inserts y at position i in list x.

Elements after position i are shifted to the right.

2. [10 points total] Poutporri

(a) [2 points] What is the difference between a statement and an expression?

(b) [3 points] Execute the three statements below. What is printed out? Explain your answer.
>>> a = [1,2]
>>> b = a[:]
>>> print (a == b)
>>> print (a is b)

(c) [3 points] Below are three expressions. For each one, write its value. If evaluation leads to
an error, just say BAD (do not tell us the exception).

3/2 True or (5/0 < 1) (5/0 < 1) or True

(d) [2 points] Is the following definition legal? Why or why not? (abs is built into Python)

def absmax(x,y=0,z):
"""Returns: the maximum absolute value of x, y, and z.
Precondition: x, y, and z are numbers (int or float)"""
return max(abs(x),abs(y),abs(z))

Page 2

Last Name: First: Netid: Section

3. [12 points total] Testing and Error Handling

(a) [5 points] Consider the following function from lab.

def unique(lst):
"""Returns: The number of unique elements in the list.

Example: unique([1, 5, 2, 5]) evaluates to 3.

Precondition: lst is a list on ints (could be empty)."""

Do not implement this function. In the space below,provide at least four different test
cases to verify that this function is working correctly. For each test case provide: (1) the
function input, (2) the expected output, and (3) an explanation of what makes this test
significantly different.

(b) [7 points] Below are two function definitions using asserts and try-except. Write out the
series of print statements displayed for each of the given function calls.
def first(n):

print 'Start first'
try:

second(n)
print 'In first try'

except:
print 'In first except'

print 'Done first'

def second(n):
print 'Start second'
try:

assert n <= 0, 'is not <= 0'
print 'In second try'

except:
print 'In second except'

assert n >= 0, 'not >= 0'
print 'Done second'

Function Calls:
i. first(-1) ii. first(1)

Page 3

Last Name: First: Netid: Section

4. [18 points] Classes and Subclasses

For the next two questions, you will be working with a new class called GPanel. The class is a
subclass of GRectangle from Assignment 7. This class is very similar to an important class in
Java that you will see if you continue on to CS 2110.

p1
p2 p3

p4

p5 p6

q2

q3

q1

A GPanel is just a GRectangle that can con-
tain other instances of GRectangles (which
can include objects that are GImage – itself
a subclass of GRectangle or even GPanel).
For example, in the image to the right, the
GPanel p1 contains the GRectangle p2, the
GImage p3, and the GPanel p4. Furthermore,
the GPanel p4 contains the GRectangle p5
and the GImage p6. The points q1, q2, and
q3 are part of the next question, and not im-
portant just yet.
On the next page, you will implement the
class GPanel. We have provided all of the
specifications. We have also provided most
of the method headers; only __init__ has an
incomplete header. You are to implement all
methods and assert all preconditions.
In order to implement this class, you will need to remember the attributes and methods of
GRectangle. They are as follows.

Attribute Invariant Description
x float Position of left side.
y float Position of bottom edge.
width float > 0 Distance from left side to right side.
height float > 0 Distance from bottom edge to top edge.
linecolor instance of RGB Color of rectangle border.
fillcolor instance of RGB Color of rectangle interior.

Method Description
contains(x,y) Returns: True if the point (x,y) is in the rectangle; False otherwise
draw(view) Draws the rectangle to the specified GView instance view.

There are no hidden attributes or methods that you are aware of. You should also avoid using
attributes that you might have remembered from Assignment 7, but are not listed in the tables
above (you will not need them).

Finally, recall how the constructor for GRectangle works. You provide it with a list of keyword
arguments that initialize various attributes. For example, to create a red square anchored at
(0,0), use the constructor call

GRectangle(x=0,y=0,width=10,height=10,fillcolor=colormodel.RED)

The constructor for GPanel does not work this way. Please read its specification carefully.

Page 4

Last Name: First: Netid: Section

from game2d import *
import colormodel

class GPanel(GRectangle):
""""Instances are a panel that can store GRectangles (including other GPanels).

INSTANCE ATTRIBUTES (in addition to those inherited from GRectangle):
_contents [list of GRectangle (or subclass of GRectangle) objects]."""

def addContents(self,rect):
"""Adds the GRectangle (or subclass of GRectangle) rect to _contents.

Precondition: rect is an instance of GRectangle, and is contained inside of
the GPanel (left is >= panel’s left, right is <= panel’s right and so on)."""

def removeContents(self,rect):
"""Removes the GRectangle (or subclass of GRectangle) rect from _contents.

Precondition: rect is an element of _contents."""

def clear(self):
"""Removes all elements from _contents"""

def getContents(self):
"""Returns: a COPY of the list of GRectangles in this GPanel.

The GRectangles do not need to be copied; only the list."""

def __init__(): # FILL IN
"""Creates a new GPanel of the given dimensions and color.

Parameters x and y specify the bottom left corner of the panel. Parameters w
and h are the width and height. Parameter color is the fillcolor.

A new GPanel has no GRectangles stored inside it.

Precondition: x, y, w, and h are floats with w, h > 0. color is an instance
of colormodel.RGB; its default value is colormodel.WHITE."""

Page 5

Last Name: First: Netid: Section

(Continued from Previous Page)
def draw(self,view):

"""Draws this GPanel AND ITS CONTENTS to the parameter view.

The drawing order is important for this method. First it draws the GPanel
itself. Then it draws all of the contents, in the order that they are given
in the list _contents (so items at the end of the list are on top).

Precondition: view is an instance of GView."""

5. [12 points] Recursion and Iteration

We need one more method in GPanel. This method takes a point (x,y) and returns the top most
element containing that point. For example, in the image in question 4, p1.selected(q1.x,q1.y)
returns p1, p1.selected(q2.x,q2.y) returns p2, and p1.selected(q3.x,q3.y) returns p5.

Hint: You will need both recursion and iteration. You do not need to assert the precondition.

def selected(self,x,y):

"""Returns: the topmost GRectangle containing the point (x,y)

If (x,y) is not inside this GPanel, it returns None. Otherwise, it returns
the top most item (which might be the GPanel itself) containing (x,y).

Since objects are drawn back to front, top most is the LAST item in _contents
that contains (x,y). Furthermore, if that item is itself a GPanel, then you
must check the contents of that GPanel as well.

Precondition: x and y are floats."""

Page 6

Last Name: First: Netid: Section

6. [12 points] 2-Dimensional Lists
Recall the class GRectangle from Assignment 7 and the previous
two problems. In Assignment 7, you had to lay the bricks out on
the screen in a pattern. You are going to do something similar
here; the function make_bricks creates a 2-dimensional list of
bricks arranged as shown to the right. In writing this function,
keep the following in mind.

• There are m columns and rows of squares. In the example above, m = 8.
• Each square has side length SIZE, and there is no space between them.
• The origin is in the bottom-left corner. x increases to the right; y increases upward.
• Each row in the list contains a single row of bricks, starting at the bottom.
• Squares in columns and rows 0 and m-1 have fillcolor colormodel.PINK.
• The bottom, left-most inner square has fillcolor colormodel.RED
• Inner squares alternate in a checkerboard of colormodel.RED and colormodel.GREEN.

def make_bricks(m):
"""Returns: a 2-D list of GRectangle objects with the properties above.

Precondition: m > 0 is an int"""

Page 7

Last Name: First: Netid: Section

7. [18 points] Call Frames

The code to the right is the Fibonacci function from
class; line numbers are labelled in red. On this page
and the next, diagram the statement r = fib(2).
Draw the contents of the call stack and global space,
but not heap space. You need a new diagram ev-
ery time a frame is added or erased, or an instruction
counter changes. We have done the first step for you.
There are eleven more diagrams to draw. Please order
your answer according to the numbers given. You may
write unchanged if a space does not change.

def fib(n)

if n == 0 or n == 1: 1

return 1 2

one = fib(n-1) 3
two = fib(n-2) 4
return one+two 5

Call Frames Global Space

1

n 2

fib

Global SpaceCall Frames

1

2

4

5

3

Page 8

Last Name: First: Netid: Section

Call Frames Global Space Global SpaceCall Frames

7

8

10

11

96

8. [16 points total] Loop Invariants

On the next page are two variations of the Dutch National Flag algorithm from class. The one
on the left has been completed for you. The second algorithm is identical to the first except
that it has a different loop invariant. It is currently missing the code for initialization, the loop
condition, and the body of the loop (all other code is provided).

(a) [3 points] Draw the horizontal notation representation for the loop invariant on the left.

Page 9

Last Name: First: Netid: Section

(b) [3 points] Draw the horizontal notation representation for the loop invariant on the right.

(c) [10 points] Add the missing code to the function on the right. Like the function on the left,
you may use the helper function swap(b,n,m) to swap two positions in the list. It is not
enough for your code to be correct. To get credit, you must satisfy the loop invariant.

def dnf(b,h,k):

"""Returns: Divisions i, j of dnf

Pre: h, k are positions in list b."""
Make invariant true at start

t = h

j = k+1

i = k+1

inv: b[h..t-1] < 0, b[t..i-1] ???,
b[i..j-1] = 0, and b[j..k] > 0

while t < i:

if b[i-1] < 0:

swap(b,i-1,t)

t= t+1

elif b[i-1] == 0:

i= i-1

else:

swap(b,i-1,j-1)

i= i-1

j= j-1

post: b[h..i-1] < 0, b[i..j-1] = 0,
and b[j..k] > 0
return (i,j)

def dnf(b,h,k):

"""Returns: Divisions i, j of dnf

Pre: h, k are positions in list b."""
Make invariant true at start

inv: b[h..i-1] < 0, b[i..j-1] = 0,
b[j..t-1] ???, and b[t..k] > 0

while :

post: b[h..i-1] < 0, b[i..j-1] = 0,
and b[j..k] > 0
return (i,j)

Page 10

