CS1110 Lec. 4 October 2011
More on Recursion

Today we develop recursive functions and
look at execution of recursive functions.

Study: Sect 15.1, p. 415.
Watch: Activity 15-2.1 on the CD.

In DrJava: Write and test as many of self-review exercises as you can
(disregard those that deal with arrays).

In lab today: Write many recursive functions. Ask for help! Don’t waste
1 hour mulling over 1 function. Remember—you need:

0. A good function specification et it il (e

of what it does in terms
of the function spec, not
how execution happens

1. Base case(s) that are correct
2. Progress toward termination
3

. Recursive case(s) that are correct

A game

. while there is room Aand B
]__.J_.-] Adraws — or | ; alternate
. Bdraws =" or | ; moves

A wants to get a solid closed curve.

B wants to stop A from getting a solid
closed curve.

‘Who can win? What strategy to use?

Board can be any size: m by n
dots, withm >0,n>0

A won the game to the right
because there is a solid closed
curve.

/** = non-negative n, with commas every 3 digits
e.g. commafy(5341267) = “5,341,267” */
public static String commafy(int n) {

Recursive functions
Properties:

/**% = b €. Precondition: ¢ = 0%/
public static int exp(double b,intc) { (1) b¢ = b*b c-1
(2) For c even
b€ = (b*b) c/2
e.g 3¥3F3IH3EIH3A3EZ
= (3%3)*(3*3)*(3*3)*(3*3)

}
3 4
Recursive functions Binary arithmetic
Decimal Binary Octal Binary
= b . Precondition: ¢ > 0%/ ¢ numb.er of 00 00 00 20=1 1
public static int exp(double b, int ¢) { recursive calls 01 01 01 21=2 10
0 0 02 0 02 2=4 100
1 03 11 03 23=8 1000
2 2 04 100 04 24=16 10000
4 3 05 101 05 25=32 100000
8 4 06 110 06 26 =64 1000000
07 111 07 215=32768 1000000000000000
) 16 5 08 1000 10 !) e
32 6 09 1001 1 Test ¢ odd: Test last bit =1
32768 is 215 o i 10 1010 12 Divide c by 2: Delete the last bit

5o b32768 peeds only 16 calls!

Subtract 1 when odd: Change last bit from 1 to 0.

Exponentiation algorithm processes binary rep. of the exponent.

Hilbert’s space-filling curve

Hilbert(1): m .
As the size of each
line gets smaller and
smaller, in the limit,
Hilbert(2):

this algorithm fills
every point in space.
Lines never overlap.

H(n-1) H(n-1)

Hilbert(n): dwn dwn All methods used

in today’s lecture
H(n-1) H(n-1) will be on course
left right website

Hilbert’s space-filling curve

N

/** = non-negative n, with commas every 3 digits
e.g. commafy(5341267) = “5,341,267” */
public static String commafy(int n) {
1:if (n < 1000)
2: return “”
/I n>= 1000
3: return commafy(n/1000) + “,” + t0o3(n%1000);

Executing
recursive
function calls

+n;

¥

fs* = p with at least 3 chars — commafy(5341266 + 1)|
0’s prepended if necessary */

public static String to3(int p) {

if (p < 10) return “00” + p;
if (p < 100) return “0” + p; commafy: 1 ‘ ‘ Demo

return “” + p;

) .

