
1	

1	

CS1110 9 November 2010���
insertion sort, selection sort, quick sort���

Do exercises on pp. 311-312 to get familiar with concepts
and develop skill. Practice in DrJava! Test your methods!	

A5 times	

min 	
 2	

median	
 6	

mean 6.5	

max 19	

hours 	
number	

2-3 	
14	

4 	
26	

5 	
19	

6 	
34	

7 	
16	

10 	
12	

11 	
 02	

15 	
 01	

18-19 	
 02 	
	

2	

Comments on A5���

Recursion:	

Make requirements/descriptions less
ambiguous, clearer; give more direction.	

Need optional problem with more
complicated recursive solution would
have been an interesting challenge, more
recursive functions. They make us think!	

Make task 5 easier. I could not finish it.	

Liked not having to write test cases!	

Needed too much
help, took too long	

Add more methods; it
did not take long	

Allow us to do recursive
methods with loops rather

than recursively. 	

Good time
drinking beer

while watching
the demo after I

was done.	

I had intended here to erupt in largely incoherent
rage over that wretched concept of recursion,
which I came to hate like an enemy: like a sentient
being who, knowing the difference between right
and wrong, had purposely chosen to do me harm.
However, I then figured out how it works, and it is 	

actually quite elegant, so now I suppose I have
learned something against my will.	

3	

Sorting: 	

 ?	

0 n	

pre: b	
 sorted 	

0 n	

post: b	

 sorted ? 	

0 i n	
insertion sort 	

inv: b	

for (int i= 0; i < n; i= i+1) {	

}	

“sorted” means in ascending order	

2 4 4 6 6 7 5	

0 i	

2 4 4 5 6 6 7	

0 i	

Push b[i] down into its sorted	

 position in b[0..i];	

Iteration i makes up to i swaps.	

In worst case, number of swaps needed is
0 + 1 + 2 + 3 + … (n-1) = (n-1)*n / 2.	

Called an “n-squared”, or n2, algorithm.	

b[0..i-1]: i elements	

in worst case:	

Iteration 0: 0 swaps	

Iteration 1: 1 swap	

Iteration 2: 2 swaps	

…	
 4	

 ?	

0 n	

pre: b	
 sorted 	

0 n	

post: b	

Add property to invariant: first segment contains smaller values.	

 ≤ b[i..], sorted ≥ b[0..i-1], ? 	

0 i n	

invariant: b	

selection sort	

 sorted ? 	

0 i n	

invariant: b	

insertion sort	

for (int i= 0; i < n; i= i+1) {	

}	

2 4 4 6 6 8 9 9 7 8 9	

i n	

2 4 4 6 6 7 9 9 8 8 9	

i n	

7	

int j= index of min of b[i..n-1];	

Swap b[j] and b[i];	

Also an “n-squared”, or n2, algorithm.	

5	

Partition algorithm: Given an array b[h..k] with some value x in b[h]:	

 x ?	

h k	

P: b	

 <= x x >= x 	

h j k	

Q: b	

 3 5 4 1 6 2 3 8 1 	
b	

h k	

change:	

into	
 1 2 1 3 5 4 6 3 8	
b	

h j k	

x is called the pivot value.	

x is not a program variable; x just denotes the value initially in b[h]. 	

Swap elements of b[h..k] and store in j to truthify P:	

 1 2 3 1 3 4 5 6 8	
b	

h j k	

or	

6	

Quicksort	
/** Sort b[h..k] */	

public static void qsort(int[] b, int h, int k) {	

}	

if (b[h..k] has fewer than 2 elements)���
 return;	

j= partition(b, h, k);	

 <= x x >= x 	

 h j k	

post: b	

x ?	

 h k	

pre: b	

int j= partition(b, h, k);	

// b[h..j–1] <= b[j] <= b[j+1..k]	

// Sort b[h..j–1] and b[j+1..k]	

qsort(b, h, j–1);	

qsort(b, j+1, k);	

To sort array of size n. e.g. 215	

Worst case: n2 e.g. 230	

Average case:���
 n log n. e.g. 15 * 215	

	
 	
 215 = 32768	

2	

7	

Tony Hoare,	

in 1968 	

Quicksort author	

Tony Hoare	

in 2007 	

in Germany	

Thought of Quicksort in ~1958. Tried to explain it to a
colleague, but couldn’t.	

Few months later: he saw a draft of the definition of the
language Algol 58 –later turned into Algol 60. It had recursion.	

He went and explained Quicksort to his colleague, using
recursion, who now understood it.	

The NATO Software Engineering Conferences	

homepages.cs.ncl.ac.uk/brian.randell/NATO/	

 7-11 Oct 1968, Garmisch, Germany 	

27-31 Oct 1969, Rome, Italy	

Download Proceedings, which	

have transcripts of discussions.	

See photographs.	

Software crisis:	

Academic and industrial people.
Admitted for first time that they did
not know how to develop software
efficiently and effectively.	

9	

Software
Engineering,

1968	

Next 10-15 years: intense period of research on software
engineering, language design, proving programs correct, etc.	

10	
Software Engineering, 1968	

During 1970s, 1980s, intense research on ���
How to prove programs correct,���
How to make it practical, ���
Methodology for developing algorithms	

11	

The way we understand
recursive methods is based on
that methodology.	

Our understanding of and
development of loops is based
on that methodology.	

Throughout, we try to give
you thought habits to help you
solve programming problems
for effectively	

Mark Twain: Nothing needs changing
so much as the habits of others.	

12	

The way we understand
recursive methods is based on
that methodology.	

Our understanding of and
development of loops is based
on that methodology.	

Throughout, we try to give
you thought habits to help
you solve programming
problems for effectively	

Simplicity is key:	

Learn not only to simplify,	

learn not to complify.	

Separate concerns, and
focus on one at a time.	

Don’t solve a problem
until you know what the
problem is (give precise
and thorough specs).	

Develop and test
incrementally.	

Learn to read a program at
different levels of
abstraction.	

