
11/3/10	

1	

CS1110 4 November 2010  
Developing array algorithms. Reading: 8.3..8.5	

1	

Prelim Tuesday, 7:30PM. Olin 155 and 255	

Review session, Sunday 1–3. Phillips 101	

Handout describes what will be covered.	

have iclickers ready for quiz	

Type of d is int[][] (“int array array”,	

 	
 	
 “an array of int arrays”)	

To declare variable d:	

 int d[][].	

To create a new array and assign it to d:	

 d= new int[3][4];	

To reference element at row r column c:	

 d[r][c]	

number of rows	

number of cols	

Two-dimensional arrays	

5 4 7 3	
b	

0 1 2 3 b.length	
 one-dimensional array	

d	
 5 4 7 3	

4 8 9 7	

5 1 2 3	

0 1 2 3 	

0

1

2

rectangular array: 5 rows and 4 columns	

2	

3	

A 2-dimensional array b	

Same array in row-major order: 	

c P00 P01 P02 P03 P10 P11 P12 P13 P20 P21 P22 P23	

You can see that 	

b[0][j] is same as c[0 * (no of columns) + j]	

b[1][j] is same as c[1 * (no of columns) + j]	

and in general:	

b[i][j] is same as c[i * (no of columns) + j]	

P00 P01 P02 P03	

P10 P11 P12 P13	

P20 P21 P22 P23	

Pixel (picture element): 4 components, each in 0..255	

4	

Contains: alpha component (we never change it)	

	
 red component r	

	
 green component g	

	
 blue component b	

/** DM provides functions for extracting components of a pixel. */	

public static final DirectColorModel DM= 	

 (DirectColorModel) ColorModel.getRGBdefault();	

Procedure invert has in it: DM.getRed(pixel);	

 alpha red green blue all 4 components fit into an int	

 8 bits 8 bits 8 bits 8 bits	

(alpha << 24) | (red << 16) | (green << 8) | blue)

Dutch National Flag	

pre b ? 	

0 n	

post b reds whites blues	

0 n	

Permute b[0..n-1] to truthify:	

5	

contains red,
white, blue

balls	

Generalize the pre- and post-
condition to get a loop invariant. 	

Partition algorithm: Given an array b[h..k] with some value x in b[h]:	

 x ?	

h k	

P: b	

 <= x x >= x 	

h j k	

Q: b	

 3 5 4 1 6 2 3 8 1 	
b	

h k	

change:	

into	
 1 2 1 3 5 4 6 3 8	
b	

h j k	

x is called the pivot value.	

x is not a program variable; x just denotes the value initially in b[h]. 	

Swap elements of b[h..k] and store in j to truthify P:	

 1 2 3 1 3 4 5 6 8	
b	

h j k	

or	

6	

11/3/10	

2	

Partition algorithm: Given an array b[h..k] with some value x in b[h]:	

 x ?	

h k	

P: b	

 <= x x >= x 	

h j k	

Q: b	

x is called the pivot value.	

x is not a program variable; x just denotes the value initially in b[h]. 	

Swap elements of b[h..k] and store in j to truthify Q:	

7	

You generalize P and Q to create a loop invariant	

Binary search: Vague spec: Look for v in sorted array segment b[h..k].	

1 2 2 2 3 6 6 9 9 9 9	

h k	

 b	

8	

i	
v	
 1	

h	
 6	
 k	
 16	

6 16	

Store the index of v in variable i	

i	
v	
 2	

i	
v	
 4	

i	
v	
 0	

i	
v	
 12	

Binary search: Vague spec: Look for v in sorted array segment b[h..k].	

 Precondition P: b[h..k] is sorted (in ascending order). 	

Store in i to truthify:	

	
Postcondition Q: b[h..i] <= v and v < b[i+1..k]	

Below, the array is in non-descending order:	

 ? 	

h k	

P: b	

 <= v > v 	

h i k	

Q: b	

Called binary search
because each iteration
of the loop cuts the
array segment still to
be processed in half	

9	

Invariant as picture: Generalizing pre- and post-condition	

Finding the minimum of an array. Given array b satisfying
precondition P, store a value in x to truthify postcondition Q:	

 ? and n >= 0 	

0 n	

P: b	

 x is the min of this segment 	

0 n	

Q: b	

(values in 0..n ���
are unknown)	

10	

 x not here 	

 i	

h k	

Linear search

 v is in here 	

h k	

P: b	

 x not here x ? 	

h i k 	

Vague spec.: Find first occurrence of v in b[h..k-1].	

Better spec.: Store an integer in i to truthify postcondition Q:	

	
 Q: 1. v is not in b[h..i-1]	

	
 2. i = k OR v = b[k]	

Q: b	

 b	
OR	

11	

Reversal: Reverse the elements of array segment b[h..k]. 	

 reversed	

h k	

postcondition Q:	

 not reversed	

h k	

precondition P:	

 1 2 3 4 5 6 7 8 9 9 9 9 	
b	

h k	

Change:	

into	

 9 9 9 9 8 7 6 5 4 3 2 1	
b	

h k	

12	

