CS1110 2 November 2010

Developing array algorithms. Reading: 8.3..8.5
Important point: how we create the invariant, as a picture
Haikus (5-7-5) seen on Japanese computer monitors

Yesterday it worked. Today it is not working.	Serious error. All shortcuts have disappeared.
Windows is like that.	Screen. Mind. Both are blank.
A crash reduces	The Web site you seek
Your expensive computer	Cannot be located, but
To a simple stone.	Countless more exist.
Three things are certain:	Chaos reigns within.
Death, taxes, and lost data. Guess which has occurred?	Reflect, repent, and reboot. Order shall return.

Reflect, repent, and reboot.
Order shall return.

Developing algorithms on arrays

We develop several important algorithms on arrays.
With each, specify the algorithm by giving its precondition and postcondition as pictures.

Then, draw the invariant by drawing another picture that "generalizes" the precondition and postcondition, since the invariant is true at the beginning and at the end.

Four loopy questions - memorize them:

1. How does loop start (how to make the invariant true)?
2. When does it stop (when is the postcondition true)?
3. How does repetend make progress toward termination?
4. How does repetend keep the invariant true?

Prelim next Tuesday, 7:30PM. Olin 155 and 255
Review session, Sunday 1-3. Phillips 101
Handout describes what will be covered.

Quiz in class, Thursday, 4 October
Memorize the 4 loopy questions and be able to tell whether a given loop satisfies them or not.

Reason for quiz:

1. You need to understand the 4 loopy questions in order to understand the array algorithms we will be developing.
2. You need to know about the 4 loopy questions for the prelim

Example of an assertion about an array b. It asserts that:

1. $\mathrm{b}[0 . . \mathrm{k}-1]$ is sorted (i.e. its values are in ascending order)
2. Everything in $\mathrm{b}[0 . \mathrm{k}-1]$ is \leq everything in $\mathrm{b}[\mathrm{k} . . \mathrm{b}$.length -1$]$

Given the index h of the First element of a segment and
the index k of the element that Follows the segment, the number of values in the segment is $\mathrm{k}-\mathrm{h}$.
$\mathrm{b}[\mathrm{h} . . \mathrm{k}-1]$ has $\mathrm{k}-\mathrm{h}$ elements in it.

$(h+1)-h=1$

Generalize: To derive or induce (a general conception or principle) from particulars.
To make general: render applicable to a wider class
Generalization: All dogs hate cats

square
sides: equal
angles: equal
rhombus sides: equal

rhombus is a generalization of square
square is a particular kind of rhombus
problem: Tile an 8×8 kitchen
generalization: Tile a $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ kitchen (all using L-shaped tiles) generalization: Tile an nx n kitchen

The invariant as picture: Generalizing pre- and post-condition
Dutch national flag. Swap values of $0 . . n-1$ to put the reds first, then the
whites, then the blues. That is, given precondition P, swap value of b
[0.n] to truthify postcondition Q :

How to make invariant look like initial condition				
			-	
$$	whites	k	blues	
1. Make red, white, blue section empty: use formulas for no. of values in these sections, set $\mathrm{j}, \mathrm{k}, 1$ so that they have 0 elements.				
2. Compare precondition with invariant. E.g. in precondition, 0 marks first unknown. In invariant, k marks first unknown. Therefore, k and 0 must be the same.				
8				

Linear search

Vague spec.: Find first occurrence of v in $b[h . . k-1]$.
Better spec.: Store an integer in ito truthify postcondition Q :

OR ${ }^{b}{ }_{h}$

x is called the pivot value.
x is not a program variable; x just denotes the value initially in $b[h]$.

