
10/31/10	

1	

CS1110 2 November 2010  
Developing array algorithms. Reading: 8.3..8.5	

Haikus (5-7-5) seen on Japanese computer monitors!

Yesterday it worked.���
Today it is not working.���
Windows is like that.	

A crash reduces ���
Your expensive computer���
To a simple stone.	

Three things are certain:���
Death, taxes, and lost data.���
Guess which has occurred?	

Serious error.���
All shortcuts have disappeared.���
Screen. Mind. Both are blank.	

The Web site you seek	

Cannot be located, but���
Countless more exist.	

Chaos reigns within.���
Reflect, repent, and reboot.���
Order shall return.	

Important point: how we create the invariant, as a picture	

1	

Prelim next Tuesday, 7:30PM. Olin 155 and 255	

Review session, Sunday 1–3. Phillips 101	

Handout describes what will be covered.	

Quiz in class, Thursday, 4 October	

Memorize the 4 loopy questions and be able to tell whether a
given loop satisfies them or not.	

Reason for quiz:	

1. You need to understand the 4 loopy questions in order to
understand the array algorithms we will be developing.	

2. You need to know about the 4 loopy questions for the prelim	

2	

Developing algorithms on arrays	

We develop several important algorithms on arrays.	

With each, specify the algorithm by giving its precondition and

postcondition as pictures.	

Then, draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition, since the
invariant is true at the beginning and at the end.	

Four loopy questions —memorize them:	

1.  How does loop start (how to make the invariant true)?	

2.  When does it stop (when is the postcondition true)?	

3.  How does repetend make progress toward termination?	

4.  How does repetend keep the invariant true?	

3	

Horizontal notation for arrays, strings, Vectors	

Example of an assertion about an array b. It asserts that:	

1.  b[0..k–1] is sorted (i.e. its values are in ascending order)	

2.  Everything in b[0..k–1] is ≤ everything in b[k..b.length–1]	

b <= sorted >=	

0 k b.length	

b 	

0 h k	

Given the index h of the First element of a segment and	

the index k of the element that Follows the segment,	

the number of values in the segment is k – h.	

b[h .. k – 1] has k – h elements in it.	

h h+1	

(h+1) – h = 1	

4	

Generalize: To derive or induce (a general conception or
principle) from particulars.���
To make general: render applicable to a wider class ���

5	

Generalization: All dogs hate cats	

square	

sides: equal	

angles: equal	

rhombus	

sides: equal	

rhombus is a generalization of square	

square is a particular kind of rhombus	

problem: Tile an 8 x 8 kitchen	

generalization: Tile a 2n x 2n kitchen (all using L-shaped tiles)	

generalization: Tile an n x n kitchen	

Invariant as picture: Generalizing pre- and post-condition	

Finding the minimum of an array. Given array b satisfying
precondition P, store a value in x to truthify postcondition Q:	

 ? and n >= 0 	

0 n	

P: b	

 x is the min of this segment 	

0 n	

Q: b	

(values in 0..n ���
are unknown)	

The invariant as picture: Generalizing pre- and post-condition	

Put negative values before nonnegative ones. Given is precondition P:	

 ? 	

0 n	

P: b	
 (values in 0..n-1 are unknown)	

 < 0 >= 0 	

0 k n	

Q: b	

(values in 0..k-1 are < 0,	

 values in k..n-1 are > 0)	

6	

10/31/10	

2	

The invariant as picture: Generalizing pre- and post-condition	

Dutch national flag. Swap values of 0..n-1 to put the reds first, then the
whites, then the blues. That is, given precondition P, swap value of b
[0.n] to truthify postcondition Q: 	

 ? 	

0 n	

P: b	

 reds whites blues 	

0 n	

Q: b	

(values in 0..n-1 are unknown)	

7	

How to make invariant look like initial condition	

pre b ? 	

0 n	

inv b reds whites ? blues	

0 j k l n	

1. Make red, white, blue section empty: use formulas for
no. of values in these sections, set j, k , l so that they have
0 elements.	

2. Compare precondition with invariant. E.g. in
precondition, 0 marks first unknown. In invariant, k marks
first unknown. Therefore, k and 0 must be the same. 	

8	

Partition algorithm: Given an array b[h..k] with some value x in b[h]:	

 x ?	

h k	

P: b	

 <= x x >= x 	

h j k	

Q: b	

 3 5 4 1 6 2 3 8 1 	
b	

h k	

change:	

into	
 1 2 1 3 5 4 6 3 8	
b	

h j k	

x is called the pivot value.	

x is not a program variable; x just denotes the value initially in b[h]. 	

Swap elements of b[h..k] and store in j to truthify P:	

 1 2 3 1 3 4 5 6 8	
b	

h j k	

or	

9	

 x not here 	

 i	

h k	

Linear search

 v is in here 	

h k	

P: b	

 x not here x ? 	

h i k 	

Vague spec.: Find first occurrence of v in b[h..k-1].	

Better spec.: Store an integer in i to truthify postcondition Q:	

	
 Q: 1. v is not in b[h..i-1]	

	
 2. i = k OR v = b[k]	

Q: b	

 b	
OR	

10	

Binary search: Vague spec: Look for v in sorted array segment b[h..k].	

 Better spec:	

	
Precondition P: b[h..k] is sorted (in ascending order). 	

Store in i to truthify:	

	
Postcondition Q: b[h..i] <= v and v < b[i+1..k]	

Below, the array is in non-descending order:	

 ? 	

h k	

P: b	

 <= v > v 	

h i k	

Q: b	

Called binary search
because each iteration
of the loop cuts the
array segment still to
be processed in half	

11	

Reversal: Reverse the elements of array segment b[h..k]. 	

 reversed	

h k	

postcondition Q:	

 not reversed	

h k	

precondition P:	

 1 2 3 4 5 6 7 8 9 9 9 9 	
b	

h k	

Change:	

into	

 9 9 9 9 8 7 6 5 4 3 2 1	
b	

h k	

12	

