
10/28/10	

1	

1	

On (computational) simplicity	

We are trying to teach not just Java, but how to think about problem
solving.	

Computer science has its field called computational complexity;	

mine is called computational simplicity. – Prof. Gries 	

Most of us don’t write perfect essays in one pass, and coding is the same:
writing requires revising; programming requires revising.	

If you are writing too much code —it gets longer and longer, with no end in
sight: stop and look for a better way. If your code is getting convoluted and
you have trouble understanding it: stop and look for a better way.	

Learn to keep things simple, to solve problems in simple ways. This
sometimes requires a different way of thinking.	

A key point is to break a problem up into several pieces and do each piece in
isolation, without thinking about the rest of them. Our methodology for
developing a loop does just that.	

CS1110 28 October 2010 Arrays (secs 8.1-8.3)	

2	

Zune error���
http://tinyurl.com/9b4hmy	

2	

/* day contains the number of days	

 since ORIGINYEAR (1 Jan 1980)
*/	

/* Set year to current year and day to ���
 current day of current year */	

year = ORIGINYEAR; /* = 1980 */	

while (day > 365) {	

 if (IsLeapYear(year)) {	

 if (day > 366) {	

 	
day= day – 366;	

 	
year= year + 1; 	

 }	

 } else {	

 day= day – 365;	

 year= year + 1;	

 }	

} 	

Zune clock code keeps
time in seconds since
beginning of 1980. It

calculates current day
and year from it. 	

Example	

year day	

1980 738 	

1981 372	

1982 7	

On 31 Dec 2008, the Zune
stopped working. Anger!	

On 1 Jan 2009 it worked.	

Does each iteration
make progress toward

termination?	

Not if day == 366!!	

3	

Array: object that stores lists of things. 	

Holds a fixed number of values of a declared type. 	

(So a0 will always hold 4 int values.)	

Basic form of a declaration:	

 <type> <variable-name> ;	

So, here is a declaration of x:	

Does not create array, it only declares x.
x’s initial value is null.	

int[] x ;	

0	

1	

2	

3	

Elements of array are numbered: 0, 1, 2, …, x.length–1���

The type of array a0 is int[]	

Store its name in a variable (as always).	
 x a0	
 int[]	

5	

7	

4	

-2	

a0	

length 4	

4	

Notes on array length 	

We write x.length, not x.length(), because length
is a field, not a method. 	
 0	

1	

2	

3	

Length field is final: an array’s length (field or
actual number of items) cannot be changed once
the array is created.	

We omit this field in the rest of the pictures.	

x a0	
 int[]	

5	

7	

4	

-2	

a0	

length 4	

The length is not part of the array type, which is int[].	

This means that an array variable can be assigned arrays of
different lengths; x could later hold the name of a seven-item
int array. (But not the name of a seven-item double array).	

5	

 int[] x ;	
 x	
 null	

int[]	

0	

0	

0	

0	

a0	

x= new int[4];	
 0	

1	

2	

3	

Create array object with 4 default
values, store its name in x	

x	
 a0	

int[]	

-4	

0	

6	

-8	

a0	

0	

1	

2	

3	

Assign 2*x[0], i.e. -8, to x[3]���
Assign 6 to x[2] 	

int k= 3;	

x[k]= 2* x[0];	

x[k-1]= 6; 	

x[2]= 5; 	

x[0]= -4;	
 -4	

0	

5	

0	

a0	

0	

1	

2	

3	

Assign 5 to array element 2; ���
assign -4 to array element 0	

x[2] is a reference to element number 2 of array x	

6	

Array initializers	

Instead of 	

	
int[] c= new int[5];	

	
c[0]= 9; c[1]= 4; c[2]= 7; c[3]= 6; c[4]= 9;	

9	

4	

7	

6	

9	

a0	

array initializer: gives initial values for the
array items. Values must have the same
type, in this case, int. Length of the array
is the number of values in the list; so …	

… must omit
expression
between brackets.
Sometimes, can
even omit the
“new <type>[]”
part (see pg 274).	

Use an array initializer:	

	
int[] c= new int[] {9, 4, 7, 6, 9};	

10/28/10	

2	

7	

Use of an array initializer	

public class D {	

 public static final String[] months= new String[]{"January", "February",	

 "March", "April", "May", "June", "July", "August",	

 "September", "October", "November", "December"};	

 /** = the month, given its number m.	

 Precondition: 1 <= m <= 12 */	

 public static String theMonth(int m) {	

 return months[m–1];	

 }	

}	

Variable months is:���
static: no reason to have each object contain one.
public: can be seen outside class D.���
final: its value cannot be changed (Careful! you can still change the elements in
the array whose name it permanently holds! e.g., illegal (except in the Interactions pane…) to
say months= new String[] {“Lee”}, but legal to say months[0]= “Lee”)	

months[m–1] is ���
returned, since	

 months[0] = “January”,
months[1] = “February”, ���

…	

8	

Differences between array and Vector (“classier”, fbofw)	

Declaration: int[] a; Vector v;	

Elements of a: int values Elements of v: any Objects	

Array always has n elements Number of elements can change	

Creation: a= new int[n]; v= new Vector(); 	

Reference element: a[e] v.get(e)	

Change element: a[e]= e1; v.set(e, e1);	

Array locations a[0], a[1], … in
successive locations in memory.
Access takes same time no matter
which one you reference.	

Elements all the same declared type
(a primitive type or class type)	

Initialization shorthand exists. Class
has no methods, can’t be extended.	

Can’t tell how Vectors are stored in
memory. Referencing and changing
elements done through method calls	

Elements of any Object type (but not a
primitive type). Casting may be
necessary when an element is retrieved.	

No special initialization. Class has
methods, can be extended.	

9	

a b	

“Procedure” for swapping variable values	

public class D {	

 /** = Swap x and y */	

 public static void swap (int x, int y) {	

 int temp= x;	

 x= y;	

 y= temp;	

 }	

}	

….	

 swap(a, b);	

5	
 3	

A call will NOT swap a and b.
Parameters x and y are initialized to
the values of a and b, and thereafter,
there is no way to change a and b.	

swap: 1	
 D	

x y	

temp	

5	
 3	

?	

frame for call just after
frame created and args

assigned to parameters:	

10	

Procedure swap for swapping array elements	

5	

4	

7	

6	

5	

a0	

c	
 a0	

public class D {	

 /** = Swap b[h] and b[k] */	

 public static void swap (int[] b, int h, int k) {	

 int temp= b[h];	

 b[h]= b[k];	

 b[k]= temp;	

 }	

}	

….	

 swap(c, 3, 4);	

This does swap b[h]
and b[k], because

parameter b contains
name of the array.	

swap: 1	
 D	

b h	

temp	

a0	
 3	

?	

frame for
call just
after frame
is created.	

k	
 4	

b c is not here c 	

h i k 	

11	

Linear search	
public class D {	

 /** = index of first occurrence of c in b[h..]	

	
 Precondition: c is guaranteed to be in b[h..] */	

 public static int findFirst (int c, int[] b, int h) {	

 } 	

}	

Remember:	

h..h-1 is the
empty range	

// Store in i the index of first c in b[h..]	

int i ;	

// b[i] = c and c is not in b[h..i-1]	

return i;	

// invariant: c is not in b[h..i-1]	

while () {	

} 	

= h 	

b[i] != c	

i= i + 1;	

Loopy questions:	

1. initialization?	

2. loop condition?	

3. Progress?	

4. Keep invariant true?	

b c is not here c is in here	

h i k 	

invariant	

12	

/** = a random int in 0..p.length-1, assuming p.length > 0.	

 The (non-zero) prob of int i is given by p[i].	

 Calls: roll(new double[] {.3, .7})	

 roll (new double[]{33,.33,.34})*/	

public static int roll(double[] p) {	

	
double r= Math.random(); // r in [0,1)	

}	

0 p[0] p[0]+p[1] 1 	

/** Store in i the segment number in which r falls. */	

int i ;	

// r is in segment i	

return i;	

// inv: r is not in segments looked at (segments 0..i-1)	

while () {	

	
 	
	

}	

1. init	

2. condition	

3. progress	

4. invariant true	

= 0	

r not in segment i	

i= i + 1;	

// and iEnd is the end of (just after) segment i 	

double iEnd= p[0];	

r >= iEnd	

iEnd= iEnd + p[i+1];	

Non-uniform
randomness

from uniform
randomness:
It’s a kind of

linear search!	

