
1	

1	

CS1110 Lecture 16, 26 Oct 2010 While-loops	

Reading for next time: Ch. 8.1-8.3 (arrays)	

Prelim 2: Tu Nov 9th, 7:30-9pm. 	

 Last name A-Lewis: Olin 155	

 Last name Li-Z: Olin 255	

Conflicts? Submit CMS "assignment" "P2 conflicts" by today.	

Review session: Sun Nov 7th, 1-3pm, Phillips 101. (Set your
clocks back the night before!) 	

Reminder: A5 due Sat. Oct 30th. See assignments pg for hints on snowflake
geometry. 	

A mystery (due to von Neumann): suppose you have a biased
coin with unknown probability of heads p, 0 < p < 1.	

How can you use this coin to simulate the output of a fair coin?	

(Answer: while-loops …)	

 2	

Beyond ranges of integers: the while loop	

while (<condition>) {	

 sequence of statements	

}	

boolean expression. = "there's still stuff to do"	

 the <repetend>	

In comparison to for-loops: we get a broader notion of “there’s still
stuff to do” (not tied to integer ranges).	

But we must ensure that “condition” stops holding, since there’s no
explicit increment.	

condition	

 repetend	

false	

true	

3	

Canonical while loops	

// Process b..c	

for (int k= b; k <= c; k= k+1) { 	

 Process k;	

}	

// Process b..c 	

int k= b;	

while (k <= c) {	

 Process k;	

 k= k+1;	

}	

Scope note: since k
happened to be declared
"within" the loop, k can’t
be used after the loop.	

/* process a sequence of inputs where you don't
know how many need to be taken care of */	

<initialization>;	

while (<still input to deal with>) {	

 Process next piece of input;	

 make ready for the next piece of input;	

}	

Here’s one way to
use the while loop	

4	

Interesting while loops (showing why they can be hard to understand) 	

/** open question in mathematics: is
there an n such that this function
never returns a value (i.e., n
doesn't "return to 1")?	

 Precondition: n >=1. */	

public static boolean collatz(int n) {	

	

while (n != 1) {	

	

 	

if (n%2 == 0) { 	

	

 	

 	

n= n/2;	

	

 	

}	

	

 	

else {	

	

 	

 	

n= 3*n +1;	

	

 	

}	

	

}	

 return true; 	

}	

/** Von Neumann’s “fair coin” from
unfair coin, assuming heads prob
not 0 or 1. Encode heads/tails as
true/false. 	

= "output is heads". */	

public static boolean fairFlip() {	

 while (true) { // loop "forever"…	

 boolean f1= new unfair flip;	

 boolean f2= new unfair flip;	

 if (f1 && !f2) { // HT	

	

return true; // escape the loop	

 } else if (!f1 && f2) { // TH	

	

 return false;	

 }	

 }	

}	

5	

How to analyze loops: understanding assertions about lists	

This is an assertion about v and k,
thus explaining the meaning of
these variables. It is true because
v[0..3] are not ‘C’ and v[6..8] are
‘C’s.	

0 1 2 3 4 5 6 7 8	

X Y Z X A D C C C	

v	

v is (the name of) a list of Characters. (We
aren't showing v as a variable to save space.)	

v not C's ? all C’s k	

 6	

0 3 k 8	

v not C 's ? all C's k	

 5	

0 3 k 8	

v not C's ? k	

 0	

0 k 8	

v not C's A D all C’s k	

 4	

0 k 8	

This falsely asserts that v[0..3]
aren't C's, v[5..8] are ‘C’s.	

True assertion that v[0..-1] aren't
C's (nothing in the empty list is a C)	

True assertion: v[0..3] are not C's,
v[4] is A, v[5] is D, v[6..8] are C's.)	

6	

Counting characters. Store in n the number of '/'s in string s.	

1. How does it start? ((how)
does init. make inv true?)	

2. When does it stop? (From
the invariant and the falsity of
loop condition, deduce that
result holds.) 	

3. (How) does it make
progress toward termination?	

4. How does repetend keep
invariant true?	

R: s n is # of '/'s here	

0 s.length()	

// Store in n to truthify diagram R 	

 P: s n is # of '/'s here ?	

 0 k s.length()	

// inv: See diagram P, below 	

k= 0; n= 0;	

while () {	

}	

k!= s.length()	

k= k + 1;	

if (s.charAt(k)=='/') {n= n + 1;}	

2	

7	

We add the postcondition and
also show where the invariant
must be true:	

initialization;	

// invariant: P	

while (B) { 	

 // { P and B}	

 repetend	

 // { P }	

}	

// { P and !B }	

// { Result R }	

The four loopy questions	

Suppose we are thinking of
this while loop:	

initialization;	

while (B) { 	

 repetend	

}	

Second box helps us develop four loopy
questions for developing or understanding a
loop:	

1. How does loop start? Initialization
must truthify invariant P.	

2. When does loop stop?	

At end, P and !B are true, and these must
imply R. Find !B that satisfies P && !B
=> R.	

3. Make progress toward termination?
Put something in repetend to ensure this.	

4. How to keep invariant true? Put
something in repetend to ensure this. 	

8	

Linear search. Character c is in String s. Find its first position.	

1. How does it start? ((how)
does init. make inv true?)	

2. When does it stop? (From
the invariant and the falsity of
loop condition, deduce that
result holds.) 	

3. (How) does it make
progress toward termination?	

4. How does repetend keep
invariant true?	

R: s c not here c ?	

0 k s.length()	

// Store in k to truthify diagram R 	

 Idea: Start at beginning of s,
looking for c; stop when found. ���
How to express as an invariant?	

 P : s c not here ?	

 0 k s.length()	

// inv: See diagram P, below 	

k= 0;	

while () {	

}	

s.charAt(k) != c	

k= k + 1;	

9	

Appendix examples: Develop loop to store in x the sum of 1..100.	

1. How should the loop start? Make range 1..k–1���
empty: k= 1; x= 0;	

We’ll keep this definition of x and k true: ���
 x = sum of 1..k–1	

2. When can loop stop? What condition lets us ���
know that x has desired result? When k == 101	

3. How can repetend make progress toward termination? k= k+1;	

4. How do we keep def of x and k true? x= x + k; 	

Four loopy
questions	

k= 1; x= 0;	

// invariant: x = sum of 1..(k–1)	

while (k != 101) {	

 x= x + k;	

 k= k + 1;	

}	

// { x = sum of 1..100 }	

 10	

Roach infestation	

/** = number of weeks it takes roaches to fill the apartment --see p 244 of text*/	

public static int roaches() {	

 double roachVol= .001; // Space one roach takes	

 double aptVol= 20*20*8; // Apartment volume	

 double growthRate= 1.25; // Population growth rate per week	

 int w= 0; // number of weeks	

 int pop= 100; // roach population after w weeks	

 // inv: pop = roach population after w weeks AND	

 // before week w, volume of the roaches < aptVol	

 while (aptVol > pop * roachVol) {	

 pop= (int) (pop * growthRate);	

 w= w + 1;	

 }	

 return w;	

 }	

11	

Iterative version of logarithmic algorithm to calculate b**c	

(we’ve seen a recursive version before).	

/** set z to b**c, given c ≥ 0 */	

int x= b; int y= c; int z= 1;	

// invariant: z * x**y = b**c and 0 ≤ y ≤ c	

while (y != 0) {	

 if (y % 2 == 0)	

	

{ x= x * x; y= y/2; }	

 else { z= z * x; y= y – 1; }	

}	

// { z = b**c }	

12	

Calculate quotient and remainder when dividing x by y	

 x/y = q + r/y 21/4= 4 + 3/4	

Property: x = q * y + r and 0 ≤ r < y	

/** Set q to quotient and r to remainder.���
 Note: x >= 0 and y > 0 */	

int q= 0; int r= x;	

// invariant: x = q * y + r and 0 ≤ r	

while (r >= y) {	

	

r= r – y;	

	

q= q + 1;	

}	

// { x = q * y + r and 0 ≤ r < y }	

