CS1110 Lecture 16, 26 Oct 2010 ‘While-loops

Reading for next time: Ch. 8.1-8.3 (arrays)

Prelim 2: Tu Nov 9%, 7:30-9pm.

Last name A-Lewis: Olin 155

Last name Li-Z: Olin 255
Conflicts? Submit CMS "assignment" "P2 conflicts" by today.
Review session: Sun Nov 7%, 1-3pm, Phillips 101. (Set your
clocks back the night before!)

Reminder: A5 due Sat. Oct 30th. See assignments pg for hints on snowflake
geometry.

A mystery (due to von Neumann): suppose you have a biased
coin with unknown probability of heads p, 0 <p < 1.

How can you use this coin to simulate the output of a fair coin?

(Answer: while-loops ...) 1

Canonical while loops

/I Process b..c

int k=b;

while (k <=c¢) {
Process k;
k=k+1;

// Process b..c
for (int k=b; k <=c; k=k+1) {
Process k;

Scope note: since k
happened to be declared
"within" the loop, k can’t
be used after the loop.

/* process a sequence of inputs where you don't
EEEhas way to know how many need to be taken care of */

use the while 100p <initialization>;

while (<still input to deal with>) {
Process next piece of input;

make ready for the next piece of input;

Beyond ranges of integers: the while loop

while (<(-(,,“/,'[,'“/D)e{;boolean expression. = "there's still stuff to do"

sequence of statements <—— the <repetend>

_

false

In comparison to for-loops: we get a broader notion of “there’s still
stuff to do” (not tied to integer ranges).

But we must ensure that “condition” stops holding, since there’s no

explicit increment.
2

Interesting while loops (showing why they can be hard to understand)

/#* Von Neumann’s “fair coin” from
unfair coin, assuming heads prob
not 0 or 1. Encode heads/tails as
true/false.

there an n such that this function
never returns a value (i.e., n
doesn't "return to 1")?

= "output is heads". */ Precondition: n>=1. */
public static boolean collatz(int n) {
while (n '=1) {

if (%2 == 0) {

public static boolean fairFlip() {
while (true) { // loop "forever"...
boolean f1= new unfair flip;

boolean f2= new unfair flip; n=n/2;
if (f1 && !f2) {//HT }
return true; / escape the loop else {

}elseif (Ifl && f2) {/TH n=3%n+1;
return false; }

3 }

} return true;
}))

How to analyze loops: understanding assertions about lists
012345678

v is (the name of) a list of Characters. (We
vIXYZX ADCCC aren't showing v as a variable to save space.)

This is an assertion about v and k,
thus explaining the meaning of
these variables. It is true because
v[0..3] are not ‘C’ and v[6..8] are
‘C’s.

3 k 8

0 3
v [not C's ? all C’s

-

0 3 k

8
v [notC's| ? all C's

This falsely asserts that v[0..3]
aren't C's, v[5..8] are ‘C’s.

|

True assertion that v[0..-1] aren't

~

0 k 8
T ——

0 k 8
v |notC's |AD all C’s

C's (nothing in the empty list is a C)

|

Counting characters. Store in n the number of '/'s in string s.

// Store in n to truthify diagram R

k=0;n=0;
// inv: See diagram P, below .
1. How does it start? ((how)

. . 5
while (k!= s.length())¢ does init. make inv true?)

if (s charAu(k)==") {n=n + 1;} 2. When does it stop? (From
k=k+1; the invariant and the falsity of
¥ loop condition, deduce that
result holds.)

3. (How) does it make

0 k s.length()

progress toward termination?

True assertion: v[0..3] are not C's,
v[4]is A, v[5] is D, v[6..8] are C's.)

P: s/nis#of'/'s here

0 s Jength() 4. How does repetend keep

. invariant true?
R:s n is # of '/'s here 6

Suppose we are thinking of
this while loop:
initialization;
while (B) {

repetend

¥

We add the postcondition and
also show where the invariant
must be true:

initialization;

// invariant: P

while (B) {

The four loopy questions

Second box helps us develop four loopy
questions for developing or understanding a
loop:

1. How does loop start? Initialization
must truthify invariant P.
2. When does loop stop?

Atend, P and !B are true, and these must
imply R. Find !B that satisfies P && !B
=>R.

3. Make progress toward termination?

//{ Pand B} Put something in repetend to ensure this.
repetend
I {p P} 4. How to keep invariant true? Put

) something in repetend to ensure this.

// {Pand !B}

// { ResultR } 7

Linear search. Character c is in String s. Find its first position.

// Store in k to truthify diagram R Idea: Start at beginning of s,
looking for c; stop when found.
k=0; How to express as an invariant?
// inv: See diagram P, below .
1. How does it start? ((how)

L . 5
while (scharAtk) 1=¢) does init. make inv true?)

2. When does it stop? (From
the invariant and the falsity of
¥ loop condition, deduce that
result holds.)

k=k+1;

3. (How) does it make

0 k s length() progress toward termination?

0 k s.length()

4. How does repetend keep
invariant true?

8

Appendix examples: Develop loop to store in x the sum of 1..100.

We’ll keep this definition of x and k true:
x = sum of 1.k-1

1. How should the loop start? Make range 1..k-1
empty: k=1; x=0;

2. When can loop stop? What condition lets us
know that x has desired result? When k == 101

3. How can repetend make progress toward termination? k= k+1;

Four loopy
questions

4. How do we keep def of x and k true? x=x+k;

k=1; x=0;
// invariant: x = sum of 1..(k—1)
while (k !=101) {

x= X +k;
k=k+1;
¥
// { x =sum of 1..100 } 9

Roach infestation

/*#* = number of weeks it takes roaches to fill the apartment --see p 244 of text*/
public static int roaches() {

double roachVol= .001; // Space one roach takes

double aptVol= 20%20%#8; // Apartment volume

double growthRate= 1.25; // Population growth rate per week

int w=0; // number of weeks
int pop=100; // roach population after w weeks

// inv: pop = roach population after w weeks AND
A before week w, volume of the roaches < aptVol
while (aptVol > pop * roachVol) {
pop= (int) (pop * growthRate);
w=w+1;
¥

return w;

Tterative version of logarithmic algorithm to calculate b**c
(we’ve seen a recursive version before).

/** set z to b**c, given ¢ = 0 */
int x=b; int y=c; int z= 1;
/linvariant: z * x**y =b**c and0<y=<c
while (y !=0) {

if (y % 2==0)

{x=x*xy=y/2; }

else{z=z*x;y=y—1;}
}
/I {z=b**c}

Calculate quotient and remainder when dividing x by y
x/y=q+rly 21/4=4+ 3/4

Property: x=q*y +r and O<r<y

/** Set q to quotient and r to remainder.
Note: x>=0and y >0 */

int g=0; int r=x;
/linvariant: x=q*y+r andO=<r
while (r>=y) {
r=r-y;
q=q+1;
i
//{x=q*y+r and O<r<y}

