

A4:	A4 times:	A4 max times:
mean: 96.7	mean: 5.6	15 (2 people)
median: 98	median: 5	12 (2 people)
std dev: 6.2	std dev: 2.5	10 (4 people)
Only 107 people gave us the time spent		09 (5 people)
		08 (5 people)

Today's terminology:

assertion: true-false statement, sometimes placed in a program to assert that it is true at that point.
precondition: assertion placed before a statement
postcondition: assertion placed after a statement
loop invariant: assertion supposed to be true before and after each iteration of the loop
iteration of a loop: one execution of its repetend
And we give you a methodology for developing for-loops.

Assertion: true-false statement (comment) asserting a belief

 about (the current state of) your program.// x is the sum of $\mathbf{1} . . n<-$ asserts a specific relationship between x and n

Assertions help prevent bugs by helping you keep track of what you're doing ...
. and they help track down bugs by making it easier to check belief/code mismatches

Java assert statement. To execute: if the bool exp is
assert <boolean expression> ; false, stop with an error message

Precondition: assertion placed before a segment
Postcondition: assertion placed after a segment

Invariants: another type of assertion
An invariant is an assertion about the variables that is true before and after each iteration (execution of the repetend). $\mathrm{x}=0 ;$ for $(\mathrm{int} \mathrm{i}=2 ; \mathrm{i}<=4 ; \mathrm{i}=\mathrm{i}+1)\{$ $\mathrm{x}=\mathrm{x}+\mathrm{i}^{*} \mathrm{i} ;$
Invariant: $\mathrm{x}=$ sum of squares of $2 . . \mathrm{i}-1$
in terms of the range of integers that have been processed so far

// Process integers in $\mathrm{a} . \mathrm{b} \longleftarrow$ Command to do something
// inv: the integers in a.. $\mathrm{k}-1$ have been processed
for (int $\mathrm{k}=\mathrm{a} ; \mathrm{k}<=\mathrm{b} ; \mathrm{k}=\mathrm{k}+1)\{$
Process integer $\mathrm{k} ;$
$\}$
// post: the integers in a..b have been processed \longleftarrow equivalent post-condition

Methodology for developing a for-loop
1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition.
3. Write the basic part of the for-loop.
4. Write loop invariant.
5. Figure out any initialization.
6. Implement the repetend (Process k).
// Process b..c
Initialize variables (if necessary) to make invariant true.
// Invariant: range $\mathrm{b} . \mathrm{k}-1$ has been processed
for (int $\mathrm{k}=\mathrm{b} ; \mathrm{k}<=\mathrm{c} ; \mathrm{k}=\mathrm{k}+1)$ \{
// Process k
\} \quad // Postcondition: range $\mathrm{b} . . \mathrm{c}$ has been processed

